TOPICAL PAST PAPER QUESTIONS WORKSHEETS

AS & A Level Chemistry (9701) Paper 2

Exam Series: Feb/Mar 2017 - Oct/Nov 2023

Format Type B: Each question is followed by its answer scheme

Introduction

Each Topical Past Paper Questions Workbook contains a comprehensive collection of hundreds of questions and corresponding answer schemes, presented in worksheet format. The questions are carefully arranged according to their respective chapters and topics, which align with the latest IGCSE or AS/A Level subject content. Here are the key features of these resources:

- 1. The workbook covers a wide range of topics, which are organized according to the latest syllabus content for Cambridge IGCSE or AS/A Level exams.
- 2. Each topic includes numerous questions, allowing students to practice and reinforce their understanding of key concepts and skills.
- 3. The questions are accompanied by detailed answer schemes, which provide clear explanations and guidance for students to improve their performance.
- 4. The workbook's format is user-friendly, with worksheets that are easy to read and navigate.
- 5. This workbook is an ideal resource for students who want to familiarize themselves with the types of questions that may appear in their exams and to develop their problem-solving and analytical skills.

Overall, Topical Past Paper Questions Workbooks are a valuable tool for students preparing for IGCSE or AS/A Level exams, providing them with the opportunity to practice and refine their knowledge and skills in a structured and comprehensive manner. To provide a clearer description of this book's specifications, here are some key details:

- Title: Cambridge AS & A Level Chemistry (9701) Paper 2 Topical Past Paper Questions
- Subtitle: Exam Practice Worksheets With Answer Scheme
- Examination board: Cambridge Assessment International Education (CAIE)
- Subject code: 9701
- Years covered: Feb/Mar 2017 Oct/Nov 2023
- Paper: 2
- Number of pages: 641
- Number of questions: 183

Contents

1	Atomic structure	7
2	Atoms, molecules and stoichiometry	15
3	Chemical bonding	21
4	States of matter	29
5	Chemical energetics	45
6	Electrochemistry	49
7	Equilibria	57
8	Reaction kinetics	73
9	The Periodic Table: chemical periodicity	97
10	Group 2	145
11	Group 17	175
12	Nitrogen and sulfur	231
13	An introduction to AS Level organic chemistry	269
14	Hydrocarbons	287
15	Halogen compounds	309
16	Hydroxy compounds	349
17	Carbonyl compounds	383
18	Carboxylic acids and derivatives	403
19	Nitrogen compounds	449
20	Polymerisation	475
21	Organic synthesis	511
22	Analytical techniques	517

WWW.EXAMINENT.COM

6 CONTENTS

Chapter 1

Atomic structure

 $1.\ 9701_m22_qp_22\ Q\!:\, 1$

Fig. 1.1 shows how **first** ionisation energies vary across Period 2.

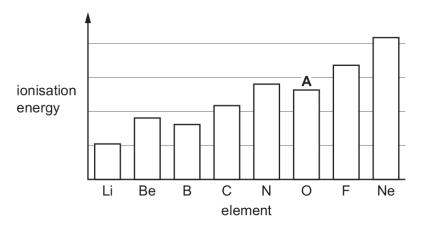


Fig. 1.1

(a)	Construct an equation to represent the first ionisation energy of oxygen.
	Include state symbols.

		[1]
(b)	(i)	State and explain the general trend in first ionisation energies across Period 2.
		[3]
	(ii)	Explain why ionisation energy A in Fig. 1.1 does not follow the general trend in first ionisation energies across Period 2.

(c) Element **E** is in Period 3 of the Periodic Table.

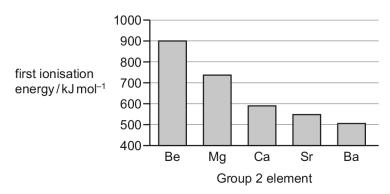

The first eight ionisation energy values of **E** are shown in Table 1.1.

Table 1.1

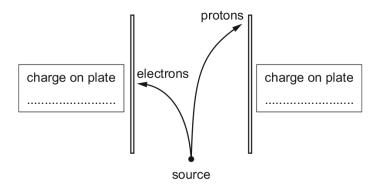
ionisation	1st	2nd	3rd	4th	5th	6th	7th	8th
ionisation energy/kJ mol ⁻¹	577	1820	2740	11 600	14800	18400	23 400	27500

Question	Answer	Marks
(a)	$O(g) \rightarrow O^{+}(g) + e^{-}$	1
(b)(i)	increase across period AND increased nuclear attraction for (valence / outer) electrons [1] increase in (positive) nuclear charge / number of protons (in the nucleus) [1] similar shielding (of outer electrons) [1]	3
(b)(ii)	spin-pair repulsion (of electrons) in (2)p orbital [1] outweighs increased nuclear charge [1]	2
(c)	1s² 2s² 2p ⁶ 3s² 3p¹ [1] greatest jump between 3rd and 4th ionisations [1] indicates three electrons in outer shell [1]	3

The graph shows the first ionisation energies of some of the elements in Group 2.

(a) Write an equation for the first ionisation energy of Mg.

	Include state symbols.
	[1]
(b)	Explain the observed trend in first ionisation energies down Group 2.
	[3]
	[0]
(c)	The second ionisation energy of Be is 1757 kJ mol⁻¹.
	Explain why the second ionisation energy of Be is higher than the first ionisation energy of Be


[Total: 6]

(a)	$Mg(g) \rightarrow Mg^{+}(g) + e^{(-)}$	1
(b)	M1: distance between nucleus and outer e⁻ increases OR outer electron removed from higher energy shell	3
	M2: increased shielding	
	M3: decreased nuclear attraction	
(c)	M1: greater nuclear attraction	2
	M2: (2nd / 2s) electron being removed from smaller (ion)	

3.
$$9701_{2}$$
 $= 22$ Q: 1

Atoms contain the subatomic particles electrons, protons and neutrons. Protons and electrons were discovered by observations of their behaviours in electric fields.

(a) The diagram shows the behaviour of separate beams of electrons and protons in an electric field

- (i) Complete the diagram with the relative charge of each of the electrically charged plates.
- (ii) On the diagram, draw a line to show how a separate beam of neutrons from the same source behaves in the same electric field.[1]
- (b) Electrons in atoms up to $_{36}{\rm Kr}$ are distributed in s, p and d orbitals.
 - (i) State the number of occupied orbitals in an isolated atom of $_{36} \rm Kr.$

type of orbital	S	р	d
number of orbitals			

[3]

(ii)	Complete the diagram to show the number and relative energies of the electrons in an isolated atom of $_{14}{\rm Si}$.
	4s
	3р
	3s
	2p
	2s
	1s 1
	[2]
(iii)	The diagram shows a type of orbital.
	State the total number of electrons that exist in all orbitals of this type in an atom of $_{\circ}F$.
(iv)	The first ionisation energies of elements in the first row of the d block (21Sc to 29Cu) are
(,	very similar. For all these elements, it is a 4s electron that is lost during the first ionisation
(,	
(,	very similar. For all these elements, it is a 4s electron that is lost during the first ionisation
(,	very similar. For all these elements, it is a 4s electron that is lost during the first ionisation
(,	very similar. For all these elements, it is a 4s electron that is lost during the first ionisation
(,	very similar. For all these elements, it is a 4s electron that is lost during the first ionisation Suggest why the first ionisation energies of these elements are very similar.
(,	very similar. For all these elements, it is a 4s electron that is lost during the first ionisation
	very similar. For all these elements, it is a 4s electron that is lost during the first ionisation Suggest why the first ionisation energies of these elements are very similar.
) <i>Hyo</i> Sta	very similar. For all these elements, it is a 4s electron that is lost during the first ionisation Suggest why the first ionisation energies of these elements are very similar. [3]
) Hyd Sta and	very similar. For all these elements, it is a 4s electron that is lost during the first ionisation Suggest why the first ionisation energies of these elements are very similar. [3] dron is a general term used to represent the ions 1H+, 2H+ and 3H+. Ite, in terms of subatomic particles in the nucleus, what is the same about each of these ions
) Hyd Sta and sar	very similar. For all these elements, it is a 4s electron that is lost during the first ionisation Suggest why the first ionisation energies of these elements are very similar. [3] dron is a general term used to represent the ions [1H+, 2H+ and 3H+.] te, in terms of subatomic particles in the nucleus, what is the same about each of these ions what is different.

(c)

(a)(i)	positive / + on left AND negative / - on right prodors charge on plate charge on plate	1	
(a)(ii)	straight line vertically upwards from the source	1	
(b)(i)	type of orbital s p d number of orbitals 4 9 5	3	
(b)(ii)	4s		
(b)(iii)	5	1	
(b)(iv)	Award one mark for each correct bullet point – max 3 marks • nuclear charge increases • extra electron(s) in inner shell / n=3 /d-subshell / d- orbital • increased shielding (of 4s electrons by electrons in n=3 / 3 rd shell / 3d) • (overall) similar nuclear attraction (for outer electron)		
(c)	answer in terms of subatomic particles in the nucleus same (number of) protons AND different (number of) neutrons	1	

Chapter 2

Atoms, molecules and stoichiometry

$$4. \ 9701 _w22 _qp _21 \ \ Q: 1$$

Atoms with nuclei containing an odd number of protons tend to have fewer isotopes than those with an even number of protons.

(a) Gallium has two stable isotopes, ⁶⁹Ga and ⁷¹Ga.

Give your answer to four significant figures.

(i) Complete Table 1.1 to show the numbers of protons, neutrons and electrons in the two stable isotopes of gallium.

Table 1.1

isotope	number of protons	number of neutrons	number of electrons
⁶⁹ Ga			
⁷¹ Ga			

(ii) Define relative atomic mass.

[2]

(iii) The relative atomic mass of gallium, A_r, is 69.723.
The relative isotopic masses of ⁶⁹Ga and ⁷¹Ga are:

⁶⁹Ga, 68.926; ⁷¹Ga, 70.925.

Use this information to calculate the percentage abundance of ⁶⁹Ga in elemental gallium. Show your working.
Assume that the element contains only the ⁶⁹Ga and ⁷¹Ga isotopes.

	0/
percentage abundance of 69Ga =	
	[2]

) Po	tassium also has two stable isotopes. Both isotopes have the same chemical properties.
(i)	Explain why both isotopes of potassium have the same chemical properties.
	[1]
(ii)	State the full electronic configuration of an atom of potassium.
	[1]
(iii)	The first, second and third ionisation energies of potassium are 418, 3070 and 4600 kJ mol ⁻¹ , respectively.
	Use this information to explain why potassium is in Group 1.
	[2]
	[Total: 10]

Question					Answer	Marks
(a)(i)	columns 1	& 3 identical				1
	isotope	No of p's	No of n's	No of e's		
	⁶⁹ Ga	31	38	31		
	⁷¹ Ga	31	40	31		
		•	√	√		1
(a)(ii)	M1 (weighted) average / mean mass of the isotopes / average mass of the atom(s) (of an element)					
	M2 compared to (the mass of) the unified atomic mass unit					1
(a)(iii)	$69.723 = 68.926x + 70.925(1-x) : x = 0.6013$ $169.723 = \frac{68.926x + 70.925(100 - x)}{100}$					1
	60.13%					1
(b)(i)	they have t	he same ele	ectron arran	gement / ele	nfiguration	1
(b)(ii)	1s ² 2s ² 2p ⁶	3s ² 3p ⁶ 4s ¹				1
(b)(iii)	M2 second OR second (an OR	ease in IE b (and third) e d third) elec d third) elec	electron(s) is tron(s) is re	removed f	oser to the nucleus	2

$$5.\ 9701_s17_qp_22\ Q:\ 1$$

The composition of atoms and ions can be determined from knowledge of atomic number, nucleon number and charge.

(a) Complete the table.

atomic number	nucleon number	number of electrons	number of protons	number of neutrons	symbol
3		2			⁶ gLi⁺
		23	26	32	

[2]

(b) Boron occurs naturally as a mixture of two stable isotopes, ¹⁰B and ¹¹B. The relative isotopic masses and percentage abundances are shown.

isotope	relative isotopic mass	abundance/%
¹⁰ B	10.0129	19.78
¹¹ B	to be calculated	80.22

(i)	Define the term <i>relative isotopic mass</i> .
	[2]
(ii)	Calculate the relative isotopic mass of ¹¹ B.
	Give your answer to six significant figures. Show your working.

[2]

[Total: 6]

(a)	atomic number	nucleon number	number of electrons	number of protons	number of neutrons	symbol		2
		6		3	3		1	
						⁵⁸ Fe ³⁺	1	
(b)(i)	EITHER mass of an atom / isotope relative / compared to 1/12 (the mass) of (an atom of) C-12 OR on a scale in which a C-12 (atom / isotope) has (a mass of exactly) 12 (units) OR mass of one mol (of atoms) of an isotope relative / compared to 1/12 (the mass) of 1 mol of C-12 OR on a scale in which one mol C-12 (atom / isotope) has a mass of (exactly) 12 g							2
(b)(ii)	$\frac{(10.0129 \times 19.78) + (80.22x)}{100} = 10.8$							1
	x = 10.9941							1
						Total:		6

Chapter 3

Chemical bonding

 $6.\ 9701_m23_qp_22\ Q:\ 1$

The Pauling electronegativity values of elements can be used to predict the chemical properties of compounds.

Use the information in Table 1.1 to answer the following questions.

Table 1.1

element	Н	Li	С	0	S
Pauling electronegativity value	2.1	1.0	2.5	3.5	2.6
first ionisation energy/kJ mol ⁻¹	1310	519	1090	1310	1000
second ionisation energy/kJ mol ⁻¹	_	7300	2350	3390	2260

a)	(i)	Define electronegativity.	
			[1]
	(ii)	O and S are in Group 16.	
		Explain the difference in the Pauling electronegativity values of O and S.	
			[2]
b)	(i)	LiH is an ionic compound.	
		Draw a dot-and-cross diagram of LiH.	
		Include all electrons.	
			[2]
	(ii)	Suggest the shape of a molecule of H ₂ S.	
			[1]

(c)	(i)	Write an equation that represents the first ionisation energy of H.
	(ii)	Explain why there is no information given in Table 1.1 for the second ionisation energy of H.
	(iii)	Give the full electronic configuration of S ²⁺ (g). [1]
(d)		and SO_2 are acidic gases. Write an equation for the reaction of SO_2 with $\mathrm{H}_2\mathrm{O}$.
	(ii)	Write an equation for the reaction of SO ₂ with NaOH.
	(iii)	Construct an equation for the reaction of CO ₂ with Mg(OH) ₂ .

WWW.EXAMINENT.COM

(e) (i) Complete Table 1.2 by placing a tick (✓) to show which of the compounds have molecules with an overall dipole moment.

Table 1.2

compound	O=C=O	O=S=O	S=C=S	S=C=O
overall dipole moment				

[2]

(ii) At 150 °C and 103 kPa, all of the compounds listed in Table 1.2 are gases.

Under these conditions, 0.284g of one of the compounds occupies a volume of 127 cm³.

Use this information to calculate the $M_{\rm r}$ of the compound. Hence, identify the compound from those given in Table 1.2.

Show your working.

[Total: 17]

Question			Ansv	wer			Marks
(a)(i)	power of an atom to attract	electrons to itself					1
(a)(ii)	O lower nuclear charge O has (one) fewer shel greater attraction (for n	I than S / less shielding					2
(b)(i)	Li	H					2
(b)(ii)	non-linear						1
(c)(i)	$H(g) \rightarrow H^{+}(g) + e^{-}$						1
(c)(ii)	H (cannot undergo second	ionisation because it or	nly) has one	electron / H	l⁺ has no e	ectron	1
(c)(iii)	1s ² 2s ² 2p ⁶ 3s ² 3p ²						1
(d)(i)	$SO_2 + H_2O \rightarrow H_2SO_3$						1
(d)(ii)	SO ₂ + 2NaOH → Na ₂ SO ₃	+ H ₂ O					1
(d)(iii)	CO ₂ + Mg(OH) ₂ → MgCO	3 + H ₂ O					1
(e)(i)		compound	0=C=O	0=S=0	S=C=S	S=C=O	2
		overall dipole moment		✓		✓	

Question		Answer	Marks
(e)(ii)	conversion of units	103000 Pa $127 \times 10^{-6} \text{m}^3$ 423 K	1
	Use of $pV = (m/M_t)RT$	$M_{\rm r} = \frac{0.284 \times 8.31 \times 423}{103000 \times 127 \times 10^{-6}}$	1
		$M_{\rm r}$ = 76.3 AND compound = CS ₂	1

WWW.EXAMINENT.COM

7. $9701 _{s23}qp_{22}$ Q: 1

The melting points of some solids are shown in Table 1.1.

Table 1.1

solid	melting point/K
magnesium	923
phosphorus	317
sodium chloride	1074
sulfur	392

(a) (i)	State the type of bonding present in magnesium and in sodium chloride.	
	bonding in magnesium	
	bonding in sodium chloride	
		1
(ii)	Explain the difference in the melting points of magnesium and sodium chloride.	
	[1
(iii)	Explain the difference in the melting points of phosphorus and sulfur in terms of structu and bonding.	re
	[2
(b) (i)	Define electronegativity.	
	[1
(ii)	Explain why electronegativity increases across a period.	

(iii)	Name the strongest intermolecular t	force that exists bet	ween NH ₃ (I) molecules.
			[1]
(iv)	Draw a diagram to show the formation two molecules of NH ₃ (I).	ation of the stronge	est intermolecular force between
	Include any relevant lone pairs of el	lectrons and dipoles	
			[2]
(v)	The melting points of ice and ammo	onia are shown in Ta	ble 1.2.
		ole 1.2	
			1
	solid	melting point/K	
	ice	273	
	ammonia	195	
	Suggest two reasons for the differen	nce in the melting p	oints of ice and ammonia.
		31	
		•••••	
			[2]
			[Total: 12]

WWW.EXAMINENT.COM

Question	Answer	Marks
(a)(i)	bonding in magnesium – metallic AND bonding in sodium chloride – ionic	1
(a)(ii)	bonds in NaCl are stronger than bonds in Mg	1
(a)(iii)	M1 S ₈ / molecules of sulfur have more electrons (than P ₄ / molecules of phosphorus) M2 S has stronger instantaneous dipole–induced dipole forces (than phosphorus / P)	2
(b)(i)	power of an atom to attract electrons to itself	1
(b)(ii)	(across a period) • increase in nuclear charge • similar shielding • (so) increase in nuclear attraction for bonding / outer / valence electrons OR bonding / outer / valence electron(s) are more strongly attracted to nucleus Two correct for one mark, three correct for two marks	2
(b)(iii)	hydrogen bond	1
(b)(iv)	M1 link shown as a dashed line between the lone pair of electrons from N of one NH ₃ to one H on other NH ₃ M2 minimum 3 correct partial charges (on adjacent atoms) over two NH ₃ molecules EITHER *N—*+H *N OR *+H	2
(b)(v)	M1 O is more electronegative than N M2 two H-bonds per water molecule : 1 per ammonia molecule.	2

Chapter 4

States of matter

,	ς
(
ı	
`	
ŀ	
ā	,
•	-
L	1
ē	1
	7
-	-
٠	
ı	3
4	=
٠	
٠,	
,	>
L	1
•	-
٠	ς
•	-
•	-
4	
•	-
•	
٠	
•	-

8. 970	$1_{\rm s22}qp_2$	Q: 1							
(a)	Define first ic	nisation e	energy.						
									[2
(b)	Successive in	onisation (energies f			nown in Ta	ıble 1.1.		
				Tabl	e 1.1				
i	onisation	1st	2nd	3rd	4th	5th	6th	7th	8th
	onisation ergy/kJ mol ⁻¹	1310	3390	5320	7450	11 000	13 300	71000	84 100
	Use Table 1.	1 to deduc	e the grou	p of the P	eriodic Ta	ble that A	belongs to	. Explain	your answe
	Group								
									[1
(c)	Across Perio increase in a							o increas	e due to th
	Explain why phosphorus.	the first	ionisation	energy o	of sulfur is	s less tha	n the firs	t ionisatio	on energy o
									[2
(d)	In an A l^{2+} ion	the nucle	ear attracti	on for the	outer ele	ctron is st	ronger tha	ın in an at	om of Na.
` '	Compare the								
	energy of alu								in a formoutio
									[2

(e) An isotope of copper has a relative isotopic mass of 65.

Complete Table 1.2 for an atom of copper-65.

Table 1.2

	atomic number	nucleon number	number of neutrons	electronic arrangement
copper-65				

	١٦.
1.1	S١
ı۰	1

(f) (i) The element copper has a relative atomic mass of 63.
--

Calculate how many atoms are present in 1.05g of copper.

	atoms of copper present =[1]
(ii)	Copper has a melting point of 1085 °C and a high electrical conductivity.
	Explain these properties of copper by referring to its structure and bonding.
	[2]

[Total: 13]

WWW.EXAMINENT.COM

${\bf Answer:}$

Question			A	Answer			Marks
(a)	energy required when one electron is removed from each atom in one mole of gaseous atoms two or three points for one mark, four points for two marks						2
(b)	Group VI / 16 AND large increas	se (in IE) afte	er 6th				1
(c)	M1 reference to spin pair repulsi OR due to repulsion of two elect M2 outweighs increased nuclear	trons in a (3)	p orbital (in S)				2
(d)	M1 similarity in electronic structure / shielding of Al ²⁺ and Na both remove electron from (3)s¹ / single electron in (3)s (sub-level / orbital) OR Al ²⁺ and Na have same electronic configuration OR shielding (of outer electron) is the same M2 greater nuclear charge / number of protons Al ²⁺ has greater nuclear charge OR 13p compared to 11p						2
(e)	a	tomic no.	nucleon no.	no.of neutrons	electronic arrangement		3
	copper –65 2	9	65	65 – 29 = 36	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹		
	M1 29 AND 65 M2 nucleon no – atomic no ALLOW ecf from M1						
	M3 electronic arrangement						

Question	Answer	Marks
(f)(i)	$M_r = 63.5$ (1.05/63.5) × 6.022 × 10 ²³ = 9.958 × 10 ²¹ OR 9.96 × 10 ²¹	1
(f)(ii)	M1 comment explaining high melting point of Cu many strong metallic bonds OR many strong (electrostatic) attractions between cations and delocalised electrons OR strong bonds in giant metallic structure.	2
	M2 comment explaining electrical conductivity of Cu delocalised electrons are free are to move through the structure (owtte)	

^	0701	0.1		00	\circ	0
9.	9701	S21	ap	22	U:	-2

The strength of interaction between particles determines whether the substance is a solid, liquid or gas at room temperature.

(a)		ithium sulfide, $\rm Li_2S$, is a crystalline solid with a melting point of 938 °C. It conducts electricity when it is molten.		
	(i)	Give the formulae of the particles present in solid lithium sulfide.		
		[1]		
	(ii)	Explain, in terms of the structure of the crystalline solid, why lithium sulfide has a high melting point.		
		[2]		
(b)	Carbon monoxide, CO, is a gas at room temperature and pressure. It contains a coord bond.			
	(i)	Explain what is meant by coordinate bond.		
		[1]		

(ii) Draw a 'dot-and-cross' diagram to show the arrangement of outer electrons in CO.

Show the electrons belonging to the C atom as \times .

Show the electrons belonging to the O atom as •.

[Total: 13]

State two assumptions that are made about the behaviour of particles in an ideal gas. (i) [2] (ii) Explain why N₂ does not behave as an ideal gas at very high pressures.[2] (iii) Complete the table by naming all the types of intermolecular forces (van der Waals') in separate samples of N₂(g) and CO(g). $N_2(g)$ CO(g) number of electrons per molecule 14 14 presence of a dipole moment ✓ X boiling point/°C -195.8-191.5intermolecular forces (van der Waals') [2] Suggest why the bond in a molecule of CO contains a dipole moment.

.....[1]

Nitrogen, N₂, is also a gas at room temperature and pressure. Neither CO nor N₂ is an ideal

Question	Answer	Marks
(a)(i)	Li ⁺ AND S ²⁻	1
(a)(ii)	M1 giant	1
	M2 (many) strong force(s) of attraction between oppositely charged ions OR (many) strong ionic bond(s)	1
(b)(i)	(covalent) bond with both electrons are provided from the same / one species OR shared pair (of electrons) are provided from the same species / one atom owtte	1
(b)(ii)	3 bonding pairs between C and O, 4 •'s AND 2*'s 1 lone pair on C, **, AND 1 lone pair on O, ••.	2
	* C * O	

Question	Answer		Mark
(c)(i)	Any two assumptions about the behaviour of particles in an ideal gas from		
	(particles / molecules have mass but) negligible size / volume (compared to total volume of gas / container)		
	no / negligible forces / interactions (bet collisions are elastic	ween particles / molecules)	
(c)(ii)	M1 IMF become larger / more significant		
	M2 volume of molecules / particles becomes significant / no longer negligible		
(c)(iii)	N ₂ (g)	CO(g)	2
	instantaneous dipole–induced dipole ✓	instantaneous dipole–induced dipole (and) permanent dipole–permanent dipole ✓	
(c)(iv)	O is more electronegative than C		1

10.	9701	$_{ m s20}$ $_{ m qp}$ $_{ m 23}$ $_{ m Q:}$ $_{ m 2}$	
(a)	Ехр	lain what is meant by the term relative isotopic mass.	
			[2]
(b)		ample of copper contains two isotopes, 63 Cu and 65 Cu. The relative atomic mass of the per in this sample is 63.55.	the
	Cald	culate the percentage abundance of each of these isotopes. Show your working.	
		percentage abundance of ⁶³ Cu =	%
		percentage abundance of ⁶⁵ Cu =	
			[2]
(c)	(i)	Name the type of bonding within a sample of solid copper.	
			[1]
	(ii)	Draw a labelled diagram to show the bonding within a sample of solid copper.	
			[2]
			-1

1s²[1]

(iii) State the electronic configuration of a copper atom.

(d) A student is provided with a sample of hydrated copper(II) sulfate, $CuSO_4 \cdot xH_2O$, and is asked to determine the value of x.

The student dissolves a sample of the hydrated copper(II) sulfate in water and adds it to an excess of aqueous potassium iodide to make a total volume of 250.0 cm³ of solution.

$$2CuSO_4 + 4KI \rightarrow 2CuI + I_2 + K_2SO_4$$

The amount of iodine produced during this reaction is found by titrating a sample of this solution with sodium thiosulfate solution.

 $25.0\,\text{cm}^3$ of the iodine-containing solution requires $20.0\,\text{cm}^3$ of $0.10\,\text{mol}\,\text{dm}^{-3}$ sodium thiosulfate solution.

$$I_2 + 2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2I^{-}$$

(i) Calculate the amount, in mol, of copper(II) sulfate present in the original sample of hydrated copper(II) sulfate.

Show your working.

amount of copper(II) sulfate = mol [2]

(ii) A total of 7.98 g of CuSO₄ is present in 10.68 g of CuSO₄•xH₂O.

Complete each row of the table to calculate the value of x, where x is an integer.

[M_r: CuSO₄,159.6]

amount of CuSO ₄ in 10.68 g of CuSO ₄ •xH ₂ O	mol
amount of H ₂ O in 10.68 g of CuSO ₄ •xH ₂ O	mol
value of x	x =

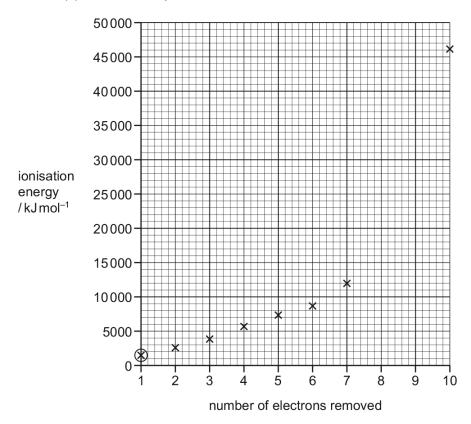
[3]

[Total: 13]

WWW.EXAMINENT.COM

Answer:

(a)	EITHER			2					
	M1 mass of an atom / isoto	ope							
	M2 relative / compared to	M2 relative / compared to 1/12 (the mass) of (an atom of) C-12 OR							
	on a scale in which a C-12	(atom / isotope) has (a mass of exactly) 12 (units)						
	OR								
	M1 mass of one mol (of at	M1 mass of one mol (of atoms) of an isotope							
	M2 relative / compared to	1/12 (the mass) of 1 mol of C-12 OR							
	in which one mol C-12 (ato	om / isotope) has a mass of (exactly) 12 g							
(b)	% abundance of ⁶³ Cu = 72 % abundance of ⁶⁵ Cu = 27			2					
		.5% ession AND correct calculation of x for one is:	otope						
		\times 63) + ((1- x)/100 \times 65) = 63.55 so x =72.5	•						
	OR % ab of 65 Cu = x (1- x)/	100×63) + $x/100 \times 65$) = 63.55 so $x = 27.5$							
	M2 calculation of abundan	ace of other isotope by 100- x							
	WE calculation of abundan	nee of differ isotope by 100 x							
(c)(i)	metallic	metallic							
(c)(ii)	diagram showing the bond	ling in a sample of copper		3					
	\odot \odot \odot \odot								
	· · · · · · · · · · · · · · · · · · ·								
	O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.								
		r arrangement of spheres labelled as positive nded by electrons and clearly labelled as 'del							
(c)(iii)	(1s ²) 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ ²	4s1 OR (1s ²) 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰		1					
(d)(i)	M1 calculate the number n	mol S ₂ O ₃ ² -added		2					
. , , ,	20/1000 x 0.10 = 2x10 ⁻³ =								
	M2 calculate number mol	$CuSO_4$ in 250cm ³ O_4) = 0.002 mol CuSO ₄ in 25cm ³							
	so 0.02 mol CuSO ₄ in 250cm ³								
	SO 0.02 MOI CUSO4 III 250	CHI							
(d)(ii)	M1 amount of CuSO ₄ in	7.98 / (159.6) = <u>0.05</u> (mol)		3					
	10.68 g of CuSO₄·xH₂O								
	M2 amount of H ₂ O in 10.68 g of CuSO ₄ ·xH ₂ O	(10.68 – 7.98) / 18 = 2.7 / 18 =) <u>0.15</u> (mol)							


11. 9701_s19_qp_21 Q: 3

(a) Construct an equation for the second ionisation energy of argon.

......[1]

(b) The graph shows successive ionisation energies for the element argon.

Complete the graph with predictions for the eighth and ninth ionisation energies of argon. Use a cross (x) for each data point. [2]

(c) The energy value required to remove the first electron from an atom of argon is circled on the graph.

Sketch the shape of the orbital that contains this electron.

)		orine exists as a diatomic gas, $\operatorname{Cl}_2(g)$. A sample of $\operatorname{Cl}_2(g)$ was made during a chemica ction. When measured at 404 kPa and 25 °C the sample occupied a volume of 20.0 cm ³ .
	(i)	Calculate the mass, in grams, of $Cl_2(g)$ formed.
		For this calculation, assume that chlorine behaves as an ideal gas under these conditions
		mass of $Cl_2(g) = \dots g [3]$
	(ii)	Calculate the number of chlorine atoms in this sample of $Cl_2(g)$. You may find it helpful to use your answer to (d)(i) .
		If you are unable to calculate an answer to (d)(i) , use 0.36g of Cl_2 . This is not the correct answer.
		number of chlorine atoms =[2]
(iii)	$\mathrm{C}\mathit{l}_{2}(\mathbf{g})$ does not behave as an ideal gas under these conditions.
		Explain why $Cl_2(g)$ behaves even less ideally at:
		very high pressures
		very low temperatures.
		ro;
		[2]

${\bf Answer:}$

(a)	$Ar^{\scriptscriptstyle +}(g) \to Ar^{2\scriptscriptstyle +}(g) + e^{\scriptscriptstyle (-)}OR\;Ar^{\scriptscriptstyle +}(g) - e^{\scriptscriptstyle (-)} \to Ar^{2\scriptscriptstyle +}(g)$	1			
(b)	at x = 8, within range 13000–20000				
	at x = 9, within range 35000–45000				
(c)	8 OR				
(d)(i)	M1 correct conversions of data to SI/consistent units $p = 404\ 000;\ V = 20 \times 10^{-6};\ T = 298$				
	M2 calculation of n (= pV/RT) from M1 values $n = \frac{404000 \times 20 \times 10^{-6}}{8.31 \times 298} = 3.263 \times 10^{-3} \text{ mol of } Cl_2$				
	M3 finding the mass of Cl_2 = 3.263 × 10 ⁻³ × 71.0 = 0.23 (g)				
(d)(ii)	Method 1 $ M1 = 3.263 \times 10^{-3} \times 2 $ $ M1 = \frac{0.23}{71.0} \times 2 \text{ OR } 6.53 \times 10^{-3} $				
	M2 = $6.02 \times 10^{23} \times M1$ M2 = $6.02 \times 10^{23} \times M1$ = 3.93×10^{21} atoms of Cl = 3.90×10^{21} atoms of Cl				
(d)(iii)	M1 size / volume of molecule / particle becomes significant / non-negligible OR IMFs become significant / non-negligible	gible			
	M2 IMFs becomes significant / non-negligible / collisions are not elastic				

12. 9701_w17_qp_22 Q: 1

The elements sodium to sulfur react with chlorine. The melting points of some of the chlorides formed are shown.

chloride	NaC1	MgCl ₂	AlCl ₃	SiC1 ₄	PCl_3	SCl ₂
melting point/K	1074	987	463	203	161	195

(a) Predict the shapes of $AlCl_3$ and PCl_3 .

Draw diagrams to show the shapes, name the shapes and state the bond angles.

AlCl ₃
shape
angle

PCl_3
shape
angle

[4]

(b)	(i)	Explain, in terms of structure and bonding, why the melting point of $SiCl_4$ is much lower than that of NaC $\it l$.
		[3]
	(ii)	Explain why the melting point of $\mathrm{SiC}l_4$ is higher than that of $\mathrm{PC}l_3$.

(iii) Draw the 'dot-and-cross' diagram of a molecule of ${\rm SiC}\,l_{\scriptscriptstyle 4}.$ Show outer electrons only.

[1]

[Total: 10]

Answer:

(a)	3 marking points for each box: diagram, name and shape. for each box: all three correct = 2 marks	4			
	two correct = 1 mark				
(b)(i)	SiC ¼ simple / molecular AND Van der Waals' / id-id forces / London / dispersion forces / IMFs	1			
	NaCl ionic OR giant				
	bonding (in NaC l) strong <u>er</u> (than forces in SiC l_4) owtte	1			
(b)(ii)	SiCI ₄ has more electrons ORA	1			
	stronger Van der Waals' / id-id forces / London / dispersion forces / IMFs	1			
(b)(iii)	:çi: :çi:si:çi: :çi:	1			

Chapter 5

Chemical energetics

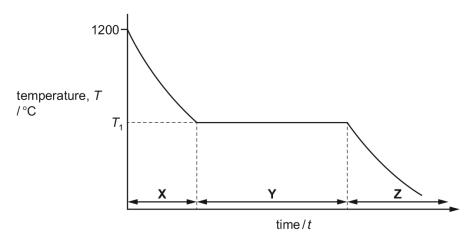
Structure and bonding can be used to explain many of the properties of substances.

(a) Copper, ice, silicon(IV) oxide, iodine and sodium chloride are all crystalline solids.

Complete the table with:

- the name of a type of bonding found in each crystalline solid,
- the type of lattice structure for each crystalline solid.

crystalline solid	type of bonding	type of lattice structure
copper		
ice		
silicon(IV) oxide		
iodine		
sodium chloride		


[5]

(h)	(i)	Name t	he strond	est type	of interm	nolecular	force	in ice	١.

	-
יו	

(ii)	Draw a fully	labelled	diagram	of two	water	molecules	in ice,	showing	the	force	in (i) and
	how it forms.	_										

(c) The graph represents how the temperature of a sample of copper (melting point 1085 °C) changes as it is gradually cooled from 1200 °C.

(i) Identify the state(s) of matter present during each stage of the process shown in the graph.

X	
Υ	
Z	

(ii) State what is happening to the energy and movement of the particles in the copper during stage X.

 	[2]

(iii) Explain why the temperature stays constant at T_1 during stage Y.

	[2]

[Total: 15]

WWW.EXAMINENT.COM

${\bf Answer:}$

(a)	substance	type of bonding	type of lattice structure			
	copper	metallic	giant/metallic			
	ice	covalent OR hydrogen(-bonding) / H(-bonding)	hydrogen-bonded / simple / molecular			
	silicon(IV) oxide	covalent	giant (molecular) / macromolecular			
	iodine	covalent	simple / molecular			
	sodium chloride	ionic	giant / ionic			
(b)(i)	hydrogen bonding					
(b)(ii)	H-bond between O and H of different molecules					
	minimum three partial charges (in a row) over two H_2O molecules, i.e.: either ${}^{\delta-}O$ — $H^{\delta+}$ ${}^{\delta-}O$ or $H^{\delta+}$ ${}^{\delta-}O$ — $H^{\delta+}$					
	lone pair of electrons on O of H-bond, in line with H-bond					
(c)(i)	X = liquid AND Z = solid					
	Y = liquid and solid OR 'liquid / solid' OR 'liquid OR solid'					
(c)(ii)	(kinetic) energy reducing					
	motion slowing owtte					
(c)(iii)	energy given out / released forming bonds / forming bonds exothermic					
	compensates for / counteracts heat loss / cooling owtte					