Topical Past Paper Questions Worksheets

IGCSE Biology (0610)

Paper 4 (Extended)

Exam Series: Feb/Mar 2017 - May/Jun 2023
Format Type A:
Answers to all questions are provided as an appendix

Introduction

Each Topical Past Paper Questions Compilation contains a comprehensive collection of hundreds of questions and corresponding answer schemes, presented in worksheet format. The questions are carefully arranged according to their respective chapters and topics, which align with the latest IGCSE or AS/A Level subject content. Here are the key features of these resources:

1. The workbook covers a wide range of topics, which are organized according to the latest syllabus content for Cambridge IGCSE or AS/A Level exams.
2. Each topic includes numerous questions, allowing students to practice and reinforce their understanding of key concepts and skills.
3. The questions are accompanied by detailed answer schemes, which provide clear explanations and guidance for students to improve their performance.
4. The workbook's format is user-friendly, with worksheets that are easy to read and navigate.
5. This workbook is an ideal resource for students who want to familiarize themselves with the types of questions that may appear in their exams and to develop their problem-solving and analytical skills.

Overall, Topical Past Paper Questions Workbooks are a valuable tool for students preparing for IGCSE or AS/A level exams, providing them with the opportunity to practice and refine their knowledge and skills in a structured and comprehensive manner. To provide a clearer description of this book's specifications, here are some key details:

- Title: Cambridge IGCSE Biology (0610) Paper 4 Topical Past Paper Questions
- Subtitle: Exam Practice Worksheets With Answer Scheme
- Examination board: Cambridge Assessment International Education (CAIE)
- Subject code: 0610
- Years covered: Feb/Mar 2017 - May/Jun 2023
- Paper: 4
- Number of pages: 967
- Number of questions: 279

Contents

1 Characteristics and classification of living organisms 7
2 Organisation of the organism 13
3 Movement into and out of cells 17
4 Enzymes 21
5 Plant nutrition 25
6 Human nutrition 39
7 Transport in plants 79
8 Transport in animals 121
9 Diseases and immunity 155
10 Gas exchange in humans 203
11 Respiration 223
12 Excretion in humans 249
13 Coordination and response 265
14 Drugs 335
15 Reproduction 355
16 Inheritance 395
17 Variation and selection 485
18 Organisms and their environment 513
19 Human influences on ecosystems 557
20 Biotechnology and genetic modification 707
A Answers 789

Chapter 5

Plant nutrition

7. $0610 _$s23_qp_41 Q: 2
(a) A student investigated osmosis in potato plant cells.

He immersed cubes of potato tissue in water and different concentrations of sucrose solution for 30 minutes.

The masses of the potato cubes were measured before and after immersion.
The percentage changes in mass were calculated.
Table 2.1 shows the results.
Table 2.1

concentration of sucrose solution $/ \mathrm{mol} \mathrm{dm}^{-3}$	mass of potato cube before immersion/g	mass of potato cube after immersion $/ \mathrm{g}$	percentage change in mass
0.00	1.32	1.50	13.64
0.20	1.34	1.49	11.19
0.40	1.30	1.34	3.08
0.60	1.33	1.29	-3.01
0.80	1.22	1.12	-8.20
1.00	1.28	1.11	

(i) Using the information in Table 2.1, calculate the percentage change in mass at $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$.

Give your answer to two decimal places.
Space for working.
(ii) Using the information in Table 2.1, explain the difference in the results between the $0.6 \mathrm{~mol} \mathrm{dm}^{-3}$ and the $0.8 \mathrm{moldm}^{-3}$ sucrose solutions.

Use the term water potential in your answer.
\qquad
(iii) Describe the expected appearance of a cell from a potato cube that has been immersed in distilled water for 30 minutes.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Describe how the process of active transport differs from the process of osmosis.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) State the type of plant cells that use active transport to absorb mineral ions from the environment.
(d) Explain the effect of a lack of magnesium ions on the colour of plant leaves.
\qquad
\qquad
\qquad
\qquad
\qquad
8. $0610 _$s23_qp_41 Q: 4
(a) Fig. 4.1 shows the effect of light intensity on the rate of photosynthesis at different temperatures and concentrations of carbon dioxide.

Fig. 4.1
Describe and explain the reasons for the shape of lines \mathbf{B} and \mathbf{C} in Fig. 4.1.
\qquad
(b) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is one of the products of photosynthesis.

State the chemical formula of the other product.
\qquad
(c) Outline how the carbohydrates made during photosynthesis are used in plants.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
9. 0610 _s19_qp_41 Q: 2

The rate of photosynthesis of terrestrial plants can be determined by measuring the uptake of carbon dioxide.
(a) Explain why plants take up carbon dioxide during photosynthesis.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The rate of photosynthesis of parts of individual leaves can be measured using a hand-held device as shown in Fig. 2.1.

Fig. 2.1
This apparatus allows air to flow through the transparent chamber that encloses part of the leaf. The apparatus measures the carbon dioxide concentration of the air entering and leaving the chamber.

Explain how the results from the apparatus can be used to calculate the rate of photosynthesis.
\qquad
\qquad
\qquad
\qquad

EßAMONENT Eminent Exam Preparation Resources
(c) A student used the apparatus shown in Fig. 2.1 to investigate the effect of temperature on the rate of photosynthesis of the leaves of Chinese plantain, Plantago asiatica, at two different concentrations of carbon dioxide, \mathbf{A} and \mathbf{B}.

Fig. 2.2 shows the results of the investigation.

Fig. 2.2
(i) State one environmental factor that should have been kept constant in this investigation.
(ii) Describe the effect of temperature on the rate of photosynthesis when carbon dioxide concentration A was supplied.

Use the data from Fig. 2.2 in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) Calculate the percentage increase in the rate of photosynthesis at $30^{\circ} \mathrm{C}$ when the carbon dioxide concentration was increased from \mathbf{A} to \mathbf{B} as shown in Fig. 2.2.

Show your working and give your answer to the nearest whole number.
(iv) Explain the effect of increasing temperature on the rate of photosynthesis for carbon dioxide concentration B.

Use the term limiting factor in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

EKAMONENT minent Exam Preparation Resources
(v) The student concluded that carbon dioxide concentration is the factor limiting the rate of photosynthesis between $30^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$ for the results shown for \mathbf{A} in Fig. 2.2.

State the evidence for this conclusion.
\qquad
\qquad
\qquad
(d) A similar investigation was carried out on Arizona honeysweet, Tidestromia oblongifolia, that grows in Death Valley in California where the highest temperatures may be greater than $45^{\circ} \mathrm{C}$.

The results are shown in Fig. 2.3.

Fig. 2.3
Predict and explain what would happen to the rate of photosynthesis if the investigation is continued at temperatures higher than $45^{\circ} \mathrm{C}$.
\qquad
\qquad
\qquad
\qquad
\qquad

EKAMONENT Eminent Exam Preparation Resources
10. 0610 _s19_qp_43 Q: 2
(a) State the word equation for photosynthesis.
\qquad [2]
(b) Scientists investigated the effect of light intensity on the rate of photosynthesis in the leaves of eucalyptus trees at two different concentrations of carbon dioxide, \mathbf{A} and \mathbf{B}.

The results are shown in Fig. 2.1.
rate of photosynthesis
$/ \mu \mathrm{mol}$ perm ${ }^{2}$ pers

Key:
A carbon dioxide concentration 140 ppm
B carbon dioxide concentration 1000 ppm

Fig. 2.1
(i) Suggest and explain why the scientists kept the temperature of the leaves at $20^{\circ} \mathrm{C}$ while they recorded results.
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Calculate the percentage increase in the rate of photosynthesis at a light intensity of 1250 arbitrary units when the carbon dioxide concentration was increased from 140 ppm to 1000 ppm .

Show your working and give your answer to the nearest whole number.
(iii) Describe the effect of increasing light intensity on the rate of photosynthesis when the concentration of carbon dioxide was 140 ppm.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iv) Explain the effect of increasing light intensity on the rate of photosynthesis when the concentration of carbon dioxide was 1000 ppm .

Use the term limiting factor in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Chapter 6

Human nutrition

11. 0610 _s21_qp_42 Q: 2

The classification of giant pandas, Ailuropoda melanoleuca, is debated by many scientists.
Fig. 2.1 shows a giant panda eating bamboo plants.

Fig. 2.1
Fig. 2.2 shows a red panda, Ailurus fulgens, and a polar bear, Ursus maritimus.

Fig. 2.2
(a) State one dietary component that is more likely to be found in bamboo plants than in fish.
\qquad
(b) (i) State two features, visible in Fig. 2.1 and Fig. 2.2, that identify the three animals as all belonging to the same vertebrate group.

1 \qquad
2 \qquad
(ii) DNA can also be used to classify species.

Molecular biologists compared the DNA base sequences of eight species from the same vertebrate group. They used the differences to draw a classification diagram.

Fig. 2.3 shows the classification diagram for these eight species. The shorter the horizontal distance from two species to the branching point that they share, the more similar their DNA sequences are and the more closely the two species are related.

The scale on Fig. 2.3 shows the time at which the molecular biologists estimate that each branching point occurred.

Fig. 2.3

Morphology can also be used to classify species. Some scientists think that morphology suggests that the giant panda is more closely related to the red panda than it is to the polar bear.

Discuss the evidence for and against the giant panda being more closely related to the red panda than it is to the polar bear. Use the information in Fig. 2.1, Fig. 2.2 and Fig. 2.3 in your answer.
\qquad
(iii) State one other type of evidence that is used to classify species.
\qquad
12. 0610 _w22_qp_41 Q: 1
(a) Fig. 1.1 is a side view of a human skull indicating the four types of teeth and the jaws.

Fig. 1.1
(i) State the function of human teeth.
\qquad
\qquad
\qquad
(ii) State the name of the visible outer layer of the teeth.
\qquad
(iii) Explain the process of tooth decay in humans.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Mammals can be classified according to the position and shape of their teeth.

Fig. 1.2 shows the skulls of seven mammals.

not to scale

Fig. 1.2
(i) Use the key to identify each species shown in Fig. 1.2.

Write the letter of each species (\mathbf{A} to \mathbf{G}) in the correct box in the key.

Key			
1 (a)	two or more different types of teeth	go to 2	
(b)	fewer than two different types of teeth	go to 3	
2 (a)	have wide gap between front and back teeth in both jaws	go to 4	
(b)	have no wide gap between front and back teeth in both jaws	go to 6	
3 (a)	all teeth of similar shape	Orcinus orca	
(b)	no teeth on either jaw	Myrmecophaga tridactyla	
4 (a)	no incisors in upper jaw	Cervus elephus	
(b)	incisors in both upper and lower jaw	go to 5	
5 (a)	incisors on lower jaw longer than incisors on upper jaw	Macropus rufus	
(b)	incisors on upper and lower jaw are similar in size	Equus ferus	
6 (a)	incisors on lower jaw project forwards	Lemur catta	
(b)	incisors on lower jaw do not project forwards	Pteropus niger	

[4]
(ii) Killer whales, Orcinus orca, are mammals.

State two internal features you would expect to find in a killer whale that you would not find in a fish.

1 \qquad

2
(iii) State the name of the group of animals that includes mammals and fish.
\qquad
13. 0610 _w 20 _qp_42 Q: 2

Fig. 2.1 is a vertical section of a human molar tooth and surrounding structures.

Fig. 2.1
(a) State the names of the parts labelled \mathbf{A} to \mathbf{D} on Fig. 2.1.

A
B
C
D
(b) Describe and explain the function of molar teeth.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Fig. 2.2 is an X-ray of decay in a molar tooth.

Fig. 2.2
Explain how tooth decay occurs.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
14. 0610 _s 18 _qp_42 Q: 1
(a) Red pandas, Ailurus fulgens, and humans have a similar arrangement of teeth.

Fig. 1.1 shows a section through one tooth of a red panda. Fig. 1.2 shows the side view of the lower jaw of a red panda.

Fig. 1.1

Fig. 1.2
(i) State the names of the structures labelled \mathbf{A} to \mathbf{F} in Fig. 1.1 and Fig. 1.2.

A

B \qquad
C \qquad
D \qquad
E \qquad

F
(ii) State the type of digestion that breaks down large pieces of food.
(b) Food that sticks to the teeth can be used by bacteria for anaerobic respiration.

This type of respiration releases a substance that can cause tooth decay.
(i) State the type of substance released by the bacteria, during respiration, that causes tooth decay.
(ii) State the names of the two parts of a tooth that are dissolved by the substance released by bacterial respiration.

1

2
(c) The teeth of red pandas do not decay as much as human teeth.

Suggest the component of a human diet that causes teeth to decay as a result of bacterial respiration.
[Total: 8]
15. 0610 _s 17 _qp_42 Q: 4

A balanced diet is required to ensure healthy weight gain as children grow.
(a) Explain the term balanced diet.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) A doctor diagnosed a young child with marasmus.

Describe the symptoms of marasmus.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The child with marasmus was put on a special diet.

He was given fortified milk, which is milk that has extra nutrients added to it.
The child was encouraged to drink as much fortified milk as he wanted over a period of seven months.

Table 4.1 shows the composition of the fortified milk given to the child and the composition of cow's milk for comparison.

Table 4.1

type of milk	milk composition			
	percentage of protein	percentage of carbohydrate	percentage of fat	energy/kJdm³
fortified milk	16.5	57.0	17.0	5468
cow's milk	3.3	4.6	3.9	2845

The body mass of the child who had marasmus and the mean body mass of healthy children of the same age were recorded. The data is shown in Fig. 4.1.

Fig. 4.1

Using the information in Table 4.1 and Fig. 4.1, describe and explain the importance of diet when treating children affected by marasmus.
\qquad
(d) It is important that children with marasmus produce enough bile.

Describe the role of bile in the digestion of fats.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
16. 0610 _s 23 _qp_41 Q: 1
(a) Fig. 1.1 is a diagram of the digestive system.

Fig. 1.1
Each letter may be used once, more than once or not at all.
State the letter of the part shown in Fig. 1.1:
that produces bile \qquad
that produces gastric juice \qquad
that produces urea \qquad
where maltose is digested \qquad where trypsin acts. \qquad
(b) A student investigated the effect of bile on the digestion of fat in milk.

They set up three different test-tubes:

- test-tube \mathbf{A} contained milk and bile
- test-tube B contained milk and lipase
- test-tube C contained milk, lipase and bile.

They used an indicator that is pink in alkaline solutions and colourless in acidic solutions. They added the same volume of indicator to each test-tube.

The student observed and recorded the colour of the contents of each test-tube at 0 minutes, 20 minutes and 40 minutes.

Table 1.1 shows the results of the investigation.

Table 1.1

test-tube	indicator colour observed		
	0 minutes	20 minutes	40 minutes
A	pink	pink	pink
B	pink	pink	colourless
C	pink	colourless	colourless

(i) Explain the results for test-tubes \mathbf{B} and \mathbf{C} in Table 1.1.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Explain the purpose of test-tube \mathbf{A} in Table 1.1.
\qquad
\qquad
\qquad
\qquad
\qquad
The action of lipase is affected by temperature.
Fig. 1.2 shows the axes for a graph of the effect of temperature on the activity of lipase.
Complete the graph by:

- drawing a line to show the expected effect of temperature on the activity of lipase
- adding a label line and a label to show the point at which all the lipase has been denatured.
enzyme activity

temperature

Fig. 1.2
(d) Explain why lipase cannot be used to catalyse the breakdown of proteins.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
17. 0610 _s 23 _qp_ 42 Q: 7

Complete the sentences about enzymes by writing a suitable word or phrase in each of the spaces provided.

Enzymes are involved in chemical digestion which produces small \qquad molecules that can be absorbed into the blood.

Two examples of protease enzymes are pepsin and trypsin. Pepsin is produced by the
\qquad and requires acidic conditions. These conditions are created by the release of \qquad which provides the optimum pH for pepsin activity and also kills harmful \qquad

The .. produces trypsin which breaks down protein in

\qquad which neutralises the gastric juices and also has an important role in the \qquad of fats and oils.
18. 0610_w22_qp_41 Q: 2

Digestive enzymes catalyse the breakdown of large insoluble molecules.
(a) (i) Explain why it is important that large insoluble molecules are broken down by chemical digestion.
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) State the name of the substance that is the solvent for most molecules that have been digested by enzymes.
\qquad
(b) The activity of two protease enzymes, \mathbf{A} and \mathbf{B}, was measured at different pHs. Both enzymes are found in the human alimentary canal.

The results are shown in Fig. 2.1.

Fig. 2.1

Describe and explain the roles of the two protease enzymes, \mathbf{A} and \mathbf{B}, in the alimentary canal.

Use the information in Fig. 2.1 to support your answer.
\qquad
(c) Maltase is a digestive enzyme that acts in the small intestine.

State the exact location of maltase in the small intestine.

6． 0610 ＿w18＿ms＿41 Q： 6

	Answer			Mark	Partial Marks
（a）（i）	reflex（action）；			1	
（a）（ii）	contains antibodies／passive immunity／idea of fighting infections ； bonding with mother／AW ； is at a suitable body temperature ； sterile／less risk of infection／contamination ； convenience／always available／no preparation ； cheap／free ； easy to digest／less risk of colic／less risk of diabetes in child ； no additives／less risk of allergies ； idea of volume is controlled／no over－feeding ； nutrient requirements met／change with age／change with development ； AVP ；；			4	
（b）（i）	enzyme	substrate	product（s）	3	
	amylase	starch	glucose／maltose ；		
	maltase	maltose	glucose ；		
	protease	protein	amino acids ；		
（b）（ii）	high temperatures denature enzymes／AW ； low temperatures result in low energy／fewer collisions／slower reactions ／AW； enzymes work best／most efficient at optimum temperature ；			2	
（b）（iii）	```pH; enzyme concentration ; substrate concentration ;```			1	

7． 0610 ＿s $23 _\mathrm{ms}$＿41 Q： 2

Question	Answer	Marks	Guidance
（a）（i）	－13．28（\％）；；；	3	MP1 for correct selection of data from Table 2.1 $=1.11-1.28 \text { or }(-) 0.17$ MP2 correct calculation（ -0.17 or 1.11 － $1.28 / 1.28) \times 100 \text { or }-13.28125$ MP3 answer rounded correctly to two decimal places with a minus sign
（a）（ii）	any five from： potato（cube）in 0.8 （ $\mathrm{mol} \mathrm{dm}^{-3}$ solution）loses greater（percentage） mass／ora； movement of water out／loss of water，is cause of mass loss ； water moves from an area of high water potential to an area of low water potential／AW ； water potential of 0.8 （ $\mathrm{mol} \mathrm{dm}^{-3}$ solution）is lower than the water potential of the 0.6 （ $\mathrm{mol} \mathrm{dm}^{-3}$ solution）； greater／steeper，water potential gradient in $0.8\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ than in $0.6\left(\mathrm{~mm} \mathrm{dm}^{-3}\right)$ ； （relatively）more water leaves the potato（cube）in 0.8 （ $\mathrm{mol} \mathrm{dm}^{-3}$ solution）；	5	
（a）（iii）	any two from： （cell is）swollen／large（r）／big（ger）／wide（r）／AW ； （cell is）turgid ； vacuole is，swollen／large（r）／big（ger）／wide（r）／AW ； cell wall bulges／AW ； cell membrane／cytoplasm／cell contents，presses on cell wall／AW ；	2	
（b）	any three from： uses energy（from respiration／mitochondria）； （transport／movement is）against a concentration gradient／AW ； involves movement of，sugars／ions／substance（s）other than water／AW ； involves protein carriers ；	3	
（c）	root hair（cells）；	1	

Question	Answer	Marks	Guidance
（d）	（leaves are）yellow／（leaves show）chlorosis ； magnesium required for making chlorophyll ；	$\mathbf{2}$	

8. 0610 _s 23 _ms_ 41 Q: 4

Question	Answer	Marks	Guidance
(a)	any six from: LIGHT (B and C as light intensity increases) the rate (of photosynthesis) increases and remains constant/ AW ; rates (of photosynthesis) are the same at low(est) light intensities ; light provides energy (for photosynthesis); where the line rises / initially, light intensity is, limiting / the limiting factor ; line(s)/rate, levels off where light intensity is not limiting; in \mathbf{B} light intensity becomes limiting at higher light intensity than \mathbf{C} / ora; CARBON DIOXIDE Idea that line C levels off, at a lower rate (of photosynthesis)/ lower light intensity ; carbon dioxide (concentration) is, lower for C / 0.04% vs 0.4%; carbon dioxide is, reactant/substrate / raw material / needed, for photosynthesis ; in C carbon dioxide is a limiting factor at a lower light intensity / in \mathbf{B} carbon dioxide is a limiting factor at a higher light intensity ; TEMPERATURE idea that temperature is limiting for \mathbf{B} at high light intensities ;	6	I if C given as well (as no evidence for C)

Question	Answer	Marks	Guidance
(b)	$\mathrm{O}_{2} ;$	1	
(c)	any four from: (glucose) used, in respiration / to provide energy / to release energy /as an energy store ; (glucose) converted to / stored as, starch ; (glucose) converted to sucrose ; sucrose for, translocation/transport (in the phloem)/ sent to sink(s) ; (glucose/ /ructose / sucrose) in nectar ; (nectar) to attract, insects / pollinators ; (glucose / fructose / sucrose) in fruits (to attract animals); (glucose) converted to cellulose ; cellulose to build cell walls ; lignin for cell walls; used to make, amino acids / fatty acids ; AVP;	$\mathbf{4}$	

9． 0610 ＿s19＿ms＿41 Q： 2

Answer		Mark	Partial Marks
（a）	carbon dioxide is，raw material／substrate／reactant／AW ； concentration of carbon dioxide is higher outside leaf than inside（so carbon dioxide diffuses into the leaf）；	2	
（b）	subtract the concentration of carbon dioxide at the end from the concentration at the start／AW ； divide by the time（taken）／per unit time ； ref．to taking（rate of）respiration into account ；	2	
（c）（i）	light intensity ； water（supply）； humidity ；	1	
（c）（ii）	increases and，reaches a plateau／remains constant／＇levels off＇； increases（between $10^{\circ} \mathrm{C}$ ）to $30^{\circ} \mathrm{C} /$ levels off at $30^{\circ} \mathrm{C}$ ； any comparative use of figures for rate with units at least once ；	3	
（c）（iii）	36 ；；	2	
（c）（iv）	temperature is the limiting factor（over whole range）； increased temperature increases，kinetic energy／KE，（of molecules）； increases rate of diffusion of carbon dioxide（into leaf）； temperature，influences／affects，（activity of）enzymes ； idea of more（effective）collisions between substrate molecules and enzymes（in plant）／more enzyme－substrate complexes formed ； more carbon dioxide is，fixed／used in photosynthesis／converted into sugar／AW ； carbon dioxide（concentration）is not limiting；	3	
（c）（v）	B shows that： rate of photosynthesis is，higher／continues to increase，if carbon dioxide is increased（at all temperatures／AW）；	1	
（d）	prediction： rate of photosynthesis，remains constant／decreases／slows； any explanation one from： enzymes／active sites，are denatured（at high temperatures）； stomata close，so，little／no，carbon dioxide can enter leaves； plant is adapted to survive at high temperatures ；	2	

10． 0610 ＿s19＿ms＿43 Q： 2

Answer		Mark	Partial Marks
（a）	carbon dioxide + water \longrightarrow ； glucose \square oxygen ；	2	
（b）（i）	temperature is a factor that affects the rate of photosynthesis ； reference to kinetic energy ； idea of effect of temperature，on enzymes／diffusion rate（of carbon dioxide）； idea that temperature is a variable that should be standardised ； AVP ；	2	
（b）（ii）	74 ；；	3	
（b）（iii）	rate（of photosynthesis）increases and，reaches a plateau／AW ； rate（of photosynthesis）increases until 1750 （a．u） ／ $25 \square \mathrm{~mol}$ per m^{2} per s； any comparative use of figures for rate ；	3	
（b）（iv）	light intensity is the limiting factor，at all light intensities used／AW ； because rate of photosynthesis does not level off（even at high light intensities）； carbon dioxide／temperature／chlorophyll／another factor，was not a limiting factor ； correct reference to（light）energy ； light is absorbed by chlorophyll ； AVP ；	4	

11. 0610 _s21_ms_42 Q: 2

Question	Answer	Marks	Guidance
(a)	(dietary) fibre / carbohydrate / starch / (named) sugar/vitamin C ;	$\mathbf{1}$	
(b)(i)	external ears / pinnae ; fur ;	$\mathbf{2}$	

Question	Answer	Marks	Guidance
(b)(ii)	any five from: for (giant panda closer to red panda): same diet / herbivores / AW ; terrestrial / similar, ecosystems / habitats ; fur markings described ; ear position ; against: shorter (branch) distance between giant panda and polar bear (than to red panda) ; fewer, DNA (base sequence)/gene, differences between giant panda and polar bear (than to red panda) ; (red panda) first appeared, 40 ± 3 million rather than 20 ± 3 million, years ago (giant and polar) ; more time for, mutations / evolution (for red panda) ; common, ancestor / branch / relationship, 20 ± 3 million, (giant and polar), than 47 ± 3 million years ago (red); DNA data is likely to be more, accurate / quantitative / not subjective ;	5	
(b)(iii)	anatomy / ability to produce fertile offspring / AVP ;	1	

12. 0610 _w 22 _ms_41 Q: 1

Question	Answer	Marks	Guidance
(b)(ii)	any two from: double circulation ; four-chambered heart ; lungs / any named part of lungs ; diaphragm ; red blood cells without nuclei ; AVP ;	$\mathbf{2}$	
(b)(iii)	vertebrates ;	$\mathbf{1}$	

13. 0610 _w 20 _ms_42 Q: 2

Question	Answer	Marks	Guidance
(a)	A	enamel ;	
	B	dentine;	
	C	pulp / pulp cavity / nerve / sensory neurone / capillaries / blood	
	vessels;		
	gum ;		

Question	Answer	Marks	Guidance
(b)	mechanical/physical, digestion ; crushes food / chewing/ grinds food / breaks food into smaller pieces; increases surface area of food ; for (named) enzyme action / chemical digestion ; AVP ; e.g. mix food with saliva	3	
(c)	(named) food remains on teeth ; bacteria, use / breakdown, sugars / carbohydrate / sweet foods ; respiration; acid is produced ; acid, dissolves/erodes / destroys / wears away / AW, enamel ; dentine is exposed /AW ; dentine, softer/dissolves more rapidly (than enamel) ; AVP; e.g. decay reaches nerve endings leading to pain	$\mathbf{4}$	

14. $0610 _$s18_ms_42 Q: 1

Answer	Mark		
(a)(i)	A dentine B cement C incisors D canine(s) E premolars F molars	3	$6 / 5$ correct $=3$ marks $3 / 4=2$ marks $1 / 2=1$ mark
(a)(ii)	mechanical ; ;;		1
(b)(i)	acid ;	$\mathbf{1}$	A carbon dioxide
(b)(ii)	enamel ; dentine ;	$\mathbf{2}$	
(c)	(named) sugar ;	1	

15. 0610_s17_ms_42 Q: 4

16. 0610 _s23_ms_41 Q: 1

Question	Answer	Marks	Guidance
(a)	K ; C; K; H; H;	5	
(b)(i)	any four from: pH decreases / (solution) becomes acidic ; (pH changes because) fatty acids are produced; lipase, digests / breaks down, fat; fatty acids, produced / AW, faster in test-tube C than B; bile, emulsifies fats / converts large particles of fat to small particles; bile increases the surface area (for lipase action);	4	
(b)(ii)	compare with tubes B and C to assess effect of lipase and/or bile ; shows that bile, does not (chemically) digest fats / does not make solution acidic ; shows that, lipase / enzyme, is required (for breakdown of fats in milk) ;	2	A control (experiment)
(c)	line drawn showing that decrease after optimum is steeper than increase; MP1 - line does not have to start at the origin or end at the x-axis label line to point where line meets the x-axis and label indicating that all the lipase is denatured / AW ; MP2 - line must meet the x-axis	2	
(d)	any three from: ref to specificity ; (only) substrate for lipase is fat (molecules) ; shape of active site is, not complementary to protein / complementary to fat ; protein cannot, fit into / bind to, active site / lipase / enzyme ; enzyme-substrate complexes cannot be formed;	3	

17. 0610 _s23_ms_42 Q: 7

Question	Answer	Marks	Guidance
	soluble; stomach; hydrochloric acid ; (named) microorganisms / pathogens; pancreas/small intestine ; alkaline ; bile / bile salts ; emulsification;	$\mathbf{8}$	

18. 0610 _w 22 _ms_41 Q: 2

Question	Answer	Marks	Guidance
(a)(i)	any two from: become soluble ; for absorption ; small enough, for diffusion / active transport ;	2	
(a)(ii)	water ;	1	
(b)	any six from: 1 protein \rightarrow amino acids ; 2 ref to specificity ; 3 both enzymes are active between pH 3 and pH 5 ; A at pH 4 $4 \quad \mathrm{~A}$ is pepsin ; 5 optimum pH at 2 ; 6 enzyme shows, no activity/ is denatured, from pH 5 ; 7 (functions) in stomach ; 8 where HCl is present/in acid conditions ; $9 \quad \mathrm{~B}$ is trypsin ; 10 optimum pH at 10 ; 11 enzyme shows, no activity / is denatured, from pH 3 ; 12 (functions) in small intestine / secreted from pancreas; 13 bile neutralises (stomach) acid/in alkaline conditions ;	6	MP1 A breaks down proteins (to, polypeptides / peptides) MP13 A pancreatic juice neutralises stomach acid
(c)	(membrane of) epithelium ;	1	

EKAMONENT minent Exam Preparation Resources

