TOPICAL PAST PAPER QUESTIONS WORKSHEETS

AS & A Level Chemistry (9701) Paper 4

Exam Series: Feb/Mar 2017 - May/June 2023

Format Type B: Each question is followed by its answer scheme

Introduction

Each Topical Past Paper Questions Workbook contains a comprehensive collection of hundreds of questions and corresponding answer schemes, presented in worksheet format. The questions are carefully arranged according to their respective chapters and topics, which align with the latest IGCSE or AS/A Level subject content. Here are the key features of these resources:

- 1. The workbook covers a wide range of topics, which are organized according to the latest syllabus content for Cambridge IGCSE or AS/A Level exams.
- 2. Each topic includes numerous questions, allowing students to practice and reinforce their understanding of key concepts and skills.
- 3. The questions are accompanied by detailed answer schemes, which provide clear explanations and guidance for students to improve their performance.
- 4. The workbook's format is user-friendly, with worksheets that are easy to read and navigate.
- 5. This workbook is an ideal resource for students who want to familiarize themselves with the types of questions that may appear in their exams and to develop their problem-solving and analytical skills.

Overall, Topical Past Paper Questions Workbooks are a valuable tool for students preparing for IGCSE or AS/A Level exams, providing them with the opportunity to practice and refine their knowledge and skills in a structured and comprehensive manner. To provide a clearer description of this book's specifications, here are some key details:

- Title: AS & A Level Chemistry (9701) Paper 4 Topical Past Paper Questions
- Subtitle: Exam Practice Worksheets With Answer Scheme
- Examination board: Cambridge Assessment International Education (CAIE)
- Subject code: 9701
- Years covered: Feb/Mar 2017 May/June 2023
- Paper: 4
- Number of pages: 864
- Number of questions: 268

Contents

1	Chemical energetics	7
2	Electrochemistry	49
3	Equilibria	103
4	Reaction kinetics	137
5	Group 2	209
6	Chemistry of transition elements	263
7	An introduction to A Level organic chemistry	439
8	Hydrocarbons	447
9	Hydroxy compounds	461
10	Carboxylic acids and derivatives	475
11	Nitrogen compounds	503
12	Polymerisation	609
13	Organic synthesis	675
14	Analytical techniques	683

6 CONTENTS

Chapter 1

Chemical energetics

(a) Complete Table 8.1 by placing **one** tick (✓) in each row to indicate the sign of each type of energy change under standard conditions.

Table 8.1

energy change	always positive	always negative	can be either negative or positive
lattice energy			
enthalpy change of hydration			
enthalpy change of solution			

[1]

(b)	Define enthalpy change of hydration.	
		F47
		[1]

(c) Table 8.2 shows various energy changes which can be used in the following questions.

Table 8.2

energy change	value/kJ mol ⁻¹
standard enthalpy change of atomisation of calcium	+178.2
first ionisation energy of calcium	+590
second ionisation energy of calcium	+1145
standard enthalpy change of atomisation of bromine	+111.9
Br-Br bond energy	+192.9
standard enthalpy change of solution of calcium bromide, CaBr ₂ (s)	-103.1
standard enthalpy change of formation of calcium bromide, CaBr ₂ (s)	-682.8
standard enthalpy change of hydration of Ca ²⁺	-1579
first electron affinity of bromine	-324.6
first ionisation energy of bromine	+1140

(i)	Select and use relevant data from Table 8.2 to calculate the lattice energy, $\Delta H_{\text{latt}}^{\Theta}$, of CaBr ₂ (s).
	It may be helpful to draw a labelled energy cycle.
	Show your working.
	$\Delta H_{\text{latt}}^{\Theta}$ of CaBr ₂ (s) = kJ mol ⁻¹ [3]
(ii)	Select and use relevant data from Table 8.2 and your answer to (c)(i) to calculate the standard enthalpy change of hydration, $\Delta H_{\text{hyd}}^{\Theta}$, of Br ⁻ .
	It may be helpful to draw a labelled energy cycle.
	If you were not able to answer (c)(i), use $-2500\mathrm{kJmol^{-1}}$ as your value for $\Delta H_{\mathrm{latt}}^{\mathrm{e}}$ of CaBr ₂ (s). This is not the correct value.
	Show your working.
	$\Delta H_{\text{hyd}}^{\Theta}$ of Br ⁻ = kJ mol ⁻¹ [2]
iii)	The enthalpy change of hydration of the Br^- ion is more negative than the enthalpy change of hydration of the I^- ion. Explain why.

EXAMINENT Eminent Exam Preparation Resources

[Total: 9]

${\bf Answer:}$

Question	Answer M								
(a)		energy change	always positive	always negative	either negative or positive		1		
		lattice energy		✓					
	enthalpy of hydration ✓								
	enthalpy of solution ✓								
		A	Il correct for o	one mark					
(b)	The energy / enthalpy change when 1 mole of gaseous ions is dissolved in water								
(c)(i)	M1 use of correct six numbers only 682.8 178.2 590 1145 111.9 324.6 M2 2× used correctly with Br (2 × 111.9 and 2 × 324.6) M3 correct signs and evaluation to give –2170.6 kJ mol ⁻¹								
Question	Answer								
(c)(ii)	M1 use of correct three numbers only 2170.6 103.1 and 1579 M2 correct signs & evaluation –347 kJ mol ⁻¹								
(c)(iii)	M1 Br⁻ has a smaller ioni M2 Br⁻ has stronger attra	c radius ctive forces with water mo	lecules				2		

ก	9701	-99	0.70	49	Ω	9
Ζ.	9701	SZZ	ab	42	w:	J

(a) (i)	Define first electron affinity.
	[2]
(ii)	The first electron affinity of an atom is usually an exothermic process, whereas the second electron affinity is an endothermic process.
	Suggest why.
	[1]
(iii)	Describe the general trend in first electron affinities for Cl, Br and I. Explain your answer.
	[2]

(b) Table 3.1 shows energy changes to be used in this question and in (c).

Table 3.1

energy change	value/kJ mol ⁻¹
standard enthalpy change of atomisation of zinc	+131
first ionisation energy of zinc	+906
second ionisation energy of zinc	+1733
standard enthalpy change of formation of ZnI ₂ (s)	-208
lattice energy, $\Delta H_{\text{latt}}^{\text{e}}$, of zinc iodide, $\text{ZnI}_{2}(\text{s})$	-2605
first ionisation energy of iodine	+1008
second ionisation energy of iodine	+1846
I–I bond energy	+151
enthalpy change of sublimation of iodine, $I_2(s) ightarrow I_2(g)$	+62

Calculate the first electron affinity for iodine. Use relevant data from Table 3.1 in your working. It may be helpful to draw a labelled energy cycle. Show all working.

first	electron	affinity	for	iodine =	kJ mol ⁻¹	[3]	1
III St	CICCLIOII	anning	101	iodii ic —	NO ITIOI	I V	1

[Total: 9]

(c) Predict how $\Delta H_{\text{latt}}^{\text{e}}$ of $\text{CdI}_2(\text{s})$ differs from $\Delta H_{\text{latt}}^{\text{e}}$ of $\text{ZnI}_2(\text{s})$. Place a tick (\checkmark) in the appropriate box in Table 3.2.

Table 3.2

$\Delta H_{\text{latt}}^{\text{e}}$ of $\text{CdI}_2(s)$ is less negative than $\Delta H_{\text{latt}}^{\text{e}}$ of $\text{ZnI}_2(s)$	$\Delta H_{\text{latt}}^{\text{e}}$ of $\text{CdI}_2(\text{s})$ is the same as $\Delta H_{\text{latt}}^{\text{e}}$ of $\text{ZnI}_2(\text{s})$	$\Delta H_{\mathrm{latt}}^{\mathrm{e}}$ of $\mathrm{CdI}_{2}(\mathrm{s})$ is more negative than $\Delta H_{\mathrm{latt}}^{\mathrm{e}}$ of $\mathrm{ZnI}_{2}(\mathrm{s})$

Explain your answer.	
	[1]
	-

Answer:

Question	Answer	Marks
(a)(i)	enthalpy change / energy change one mole of electrons (gained by) one mole of gaseous atoms two for one mark, three for two marks	2
(a)(ii)	(energy required to overcome) the repulsion between the electron and anion / negative ion	1

Question	Answer	Marks
(a)(iii)	less negative / less exothermic down the group greater the distance between the nucleus and (the shells of the) electrons OR atomic radii increases OR more shielding by inner shells the less attraction between nucleus and incoming electron (and the less energy released) two for one mark, three for two marks	2
(b)	M1 use of correct seven numbers only in calculation / energy cycle M2 only $2 \times$ used correctly M3 correct signs and evaluation ecf $-208 = 131 + 906 + 1733 + 62 + 151 + 2x - 2605$ $2x = -586$ $x = -293 \text{ kJ mol}^{-1}$	3
(c)	first box ticked AND Cd ²⁺ larger / Cd ²⁺ lower charge density AND less attraction between the ions / weaker ionic bonds	1

 $3.\ 9701_w22_qp_41\ Q:\ 1$

Potassium chloride, KCl, and magnesium chloride, MgC l_2 , are both ionic solids.

Table 1.1

energy change	value/kJ mol ⁻¹
standard enthalpy change of solution, $\Delta H_{\mathrm{sol}}^{\mathrm{e}}$, of KC l	+15
lattice energy, $\Delta H_{\text{latt}}^{\text{e}}$, of KC $l(s)$	- 701
standard enthalpy change of hydration, $\Delta H_{\text{hyd}}^{\text{e}}$, of K ⁺	-322
standard enthalpy change of hydration, $\Delta H_{\text{hyd}}^{\Theta}$, of C l^-	-364
standard enthalpy change of solution, $\Delta H_{ m sol}^{ m e}$, of MgC l_2	– 155
lattice energy, $\Delta H_{\text{latt}}^{\text{e}}$, of MgC l_2 (s)	-2493

(a) Complete the energy cycle involving the enthalpy change of solution and the lattice energy of potassium chloride, KCl, and the relevant enthalpy changes of hydration. Label your diagram.

State symbols should be used.

[2]

(b) Use the data in Table 1.1 to calculate the enthalpy change of hydration of magnesium ions, Mg^{2+} . Show your working.

 $\Delta H_{\text{hyd}}^{\text{e}}$ of magnesium ions, Mg²⁺ = kJ mol⁻¹ [2]

(c)	Exp of k	plain the reasons why the lattice energy of ${ m MgC}l_2$ is more exothermic than the lattice energy (C l .
		[2]
(d)	Def	ïne the following terms.
(,	(i)	enthalpy change of atomisation
		[1]
	(ii)	first electron affinity
		[1]
(e)	(i)	Explain what is meant by entropy, S.
	(ii)	Potassium chloride is very soluble in water at 20 °C.
	(''')	Explain the solubility of potassium chloride by reference to change in entropy, ΔS .
		[1]
	(iii)	Use the Gibbs equation and your answer to (e)(ii) to predict whether potassium chloride is more soluble in water at 20 $^{\circ}$ C or at 80 $^{\circ}$ C. Explain your answer.
		[1]
		[Total: 11]

Answer:

Question	Answer	Marks
(a)	$K^{+}(aq) + Cl^{-}(aq)$ $OR \ KCl(aq)$ $K^{+}(g) + Cl^{-}(g)$ AH_{latt} $KCl(s)$ $M1 \ K^{+}(g) \text{ and } Cl^{-}(g)$ AND $KCl(aq) \ OR \ K^{+}(aq) + Cl^{-}(aq)$ $M2 \ three correct directional arrows COND M1$	2
(b)	use of data –155, –2493 AND 2 × –364 [1] $\Delta H_{hyd} \text{ Mg}^{2+} = -1920 \text{ (kJ mol}^{-1}) \text{ [1] min 3sf}$	2
(c)	Mg ²⁺ is smaller (than K ⁺) Mg ²⁺ is greater charge (than K ⁺) greater attraction between Mg ²⁺ and Cl ⁻ /between the ions (in MgCl ₂) OR stronger ionic bonds (in MgCl ₂)	2
(d)(i)	enthalpy change when one mole of gaseous atoms formed from the element (in its standard state at 298 K)	1
(d)(ii)	enthalpy change when every atom in one mole of gaseous atoms gains one electron OR one mole of gaseous atoms gains one mole of electrons	1
(e)(i)	number of possible arrangements of particles and energy in a system	1
Question	Answer	
(e)(ii)	ΔS is positive AND KCl(s) \rightarrow K ⁺ (aq) + Cl ⁻ (aq)/ ionic lattice solid forms aqueous ions OWTTE [1] OR ΔS is positive AND ΔG is (therefore becomes) negative/ $T\Delta S$ is greater than ΔH_{sol} OWTTE [1]	1
(e)(iii)	more soluble AND ΔG is more negative at higher T / TΔS is more positive at higher T / -TΔS is more negative at higher ecf from (e)(ii) [sign ΔS]	1

$$4.\ 9701_w22_qp_42\ Q\!: 1$$

Calcium chloride, ${\rm CaC}\,l_{\rm 2}$, is an ionic solid.

The values of some energy changes are shown in Table 1.1.

Table 1.1

energy change	value/kJ mol ⁻¹
lattice energy, $\Delta H_{\text{latt}}^{\bullet}$, CaC l_2 (s)	-2237
standard enthalpy change of atomisation of calcium	+193
first ionisation energy of calcium	+590
second ionisation energy of calcium	+1150
standard enthalpy change of atomisation of chlorine	+121
first electron affinity of chlorine	-364

(a)	Define lattice energy.
	[1]
(b)	Use the data in Table 1.1 to calculate the standard enthalpy change of formation, $\Delta H_{\rm f}^{\rm e}$, or calcium chloride. It may be helpful to draw an energy cycle. Show all your working.
	$\Delta H_{f}^{e}(CaCl_{2}(s)) =kJ mol^{-1}$ [2]

(c) Three possible values for the first electron affinity of bromine are shown in Table 1.2. One of them is correct.

Place a tick by the correct value. Explain your choice.

(i) Define the following terms.

Table 1.2

possible values	place one tick (✓) in this column
-342 kJ mol⁻¹	
-364 kJ mol⁻¹	
–386 kJ mol⁻¹	

explanation	 	 	 	 	
	 	 	 	 [1]	1

(d) The enthalpy change of hydration of the chloride ion can be calculated using the lattice energy of calcium chloride and the data shown in Table 1.3.

Table 1.3

energy change	value/kJmol ⁻¹
standard enthalpy change of solution of $CaCl_2(s)$	-83
standard enthalpy change of hydration of Ca ²⁺ (g)	-1650

enthalpy change of solution
enthalpy change of hydration

(ii) Calculate the standard enthalpy change of hydration of the chloride ion, $Cl^-(g)$. It may be helpful to draw an energy cycle. Show all your working.

$$\Delta H_{\text{hyd}}^{\bullet}(\mathbb{C}l^{-}(g)) = \dots kJ \, \text{mol}^{-1}$$
 [2]

[2]

The value of $\Delta H_{\rm f}^{\rm e}({\rm CaF_2}({\rm s}))$ is $-1214\,{\rm kJ\,mol^{-1}}$.

(i)	Predict the sign of	the entropy of	change, ∆S°, fo	or this synt	hesis. Exp	lain your answer
-----	---------------------	----------------	-----------------	--------------	------------	------------------

The sign of the entropy change is	
explanation	
	[1]

 Use the value of $\Delta H_{\frac{9}{5}}^{\frac{9}{5}}(CaF_{2}(s))$ given in (e) and your answer to (e)(i) to predict how the feasibility for this synthesis will change with increasing temperature.

[Total: 11]

Answer:

Question	Answer	Marks
(a)	(energy change) when one mole of ionic solid is formed from gaseous ions	1
(b)	(-2237 + 193 + 590 + 1150 + (2 × 121) – (2 × 364)) [1]	2
	= -790 [1]	
(c)	-342 and Br atom has larger radius	1
(d)(i)	energy change when one mole dissolves in water [1] energy change when one mole of gaseous ions dissolves in water [1]	2
(d)(ii)	(-2237 - 83 + 1650)/2 [1] = -335 [1]	2
(e)(i)	negative and reduction in number of gas molecules	1
(e)(ii)	TAS becomes more negative [1] less feasible AND AG becomes positive [1]	2

5	9701	w21	an	41	Ω	3
υ.	9701	W Z 1	qρ	41	Q.	o

(a)	Define	the term	electron	affinity.
-----	--------	----------	----------	-----------

(b) Write an equation for the process corresponding to the **second** ionisation energy of calcium. Include state symbols.

......[1]

Some data relating to calcium and oxygen are listed. Select relevant data from this list for your answers to parts (c), (d) and (e).

process	value/kJ mol⁻¹
first ionisation energy of oxygen	+1310
second ionisation energy of oxygen	+3390
first electron affinity of oxygen	-142
second electron affinity of oxygen	+844
enthalpy change for $\frac{1}{2}O_2(g) + 2e^- \rightarrow O^{2-}(g)$	+951
enthalpy change for $Ca(s) \rightarrow Ca^{2+}(g) + 2e^{-}$	+1933
lattice energy of CaO(s)	-3517

(c) Oxygen exists as O₂ molecules.

Use the data in this question to calculate a value for the bond energy of the O=O bond. Show all your working.

bond energy = $kJ \, mol^{-1}$ [3]

(d)	(i)	Suggest why the first electron affinity of oxygen is negative.
		[1]
	(ii)	Suggest why the second electron affinity of oxygen is positive.
(e)	Cal	culate the enthalpy of formation of calcium oxide, CaO(s).
		enthalpy of formation =kJmol⁻¹ [2]
(f)	The	e lattice energy of lithium fluoride, LiF(s), is -1022 kJ mol ⁻¹ .
		ntify the factor that causes the lattice energy of calcium oxide to be more exothermic than of lithium fluoride. Explain why this factor causes the difference in lattice energies.
		[2] [7otal: 12]
Ans	wer:	

Question	Answer	Marks
(a)	 enthalpy/energy change one mole of electrons gained by one mole of atoms gaseous (atoms) 	2
(b)	$Ca^+(g) \rightarrow Ca^{2+}(g) + e^-$ [1]	1

_	
-	
~	
-	
-	
Ĺ	
1	
۲	
_	
4	
ш	
_	
4	
_	
7	
4	
<	
>	
ш	
ч	
-	
<	
-	
>	
۶	
Ξ	
2	
>	

Question	Answer	Marks
(c)	M1: selecting correct data 951, 844, 142 only	3
	M2: evaluation to give 249 (ΔH_{atom}) OR 2(951) = BE - 2(142) + 2(844)	
	M3: evaluation to 498 (2 × 249) ecf M2	
	951 = ΔH_{atom} -142 + 844 ΔH_{atom} = 249 BE = 498 (kJ mol ⁻¹) [3]	
(d)(i)	attraction between nucleus / protons / nuclear charge and electron [1]	1
(d)(ii)	repulsion between 1– ion / electrons of O- and electron [1]	1
(e)	M1: selecting correct data 951, 1933, 3517 only (ignore signs)	2
	M2: evaluation to give $-633 (\Delta H_f)$ ecf	
	$\Delta H_{\rm f} = 951 + 1933 - 3517 = -633 (\text{kJ mol}^{-1})$ [2]	
(f)	ionic charge / charge density (of the ions) [1]	2
	greater (attractive) force between the ions [1]	

6. 9701 w21 qp 42 Q: 1	6.	9701	w21	αp	42	Q:	1
------------------------	----	------	-----	----	----	----	---

Radium is a Group 2 element.

The predicted lattice energy, $\Delta H_{\text{latt}}^{\text{e}}$, of radium sulfide, RaS, is -2612 kJ mol⁻¹.

(a)	Define $\Delta H_{\text{latt}}^{e}$.

Some data relating to radium and sulfur are listed. Select relevant data from this list for use in your answers to parts (b) to (e).

process	value/kJ mol ⁻¹
enthalpy change for Ra(s) \rightarrow Ra ²⁺ (g) + 2e ⁻	+1619
first ionisation energy of sulfur	+1000
second ionisation energy of sulfur	+2260
first electron affinity of sulfur	-200
second electron affinity of sulfur	+532
enthalpy change for $\frac{1}{8}S_8(s) + 2e^- \rightarrow S^{2-}(g)$	+555
lattice energy of RaS(s)	-2612

(b)	Write a	n equation	for the	process	corresponding	to th	e second	electron	affinity	of	sulfur.
	Include	state symb	ols.								

F 4 1
$\Gamma \Gamma \Gamma$
F . T

(c) Sulfur exists as $\mathbf{S}_{\!\scriptscriptstyle{8}}$ molecules in the solid state.

Use the data in this question to calculate the enthalpy change for the reaction $S_8(s) \to 8S(g)$.

enthalpy change =kJ mol⁻¹ [3]

	standard enthalpy change, $\Delta H_{\rm f}^{\rm e}$ = kJ mol ⁻¹ [2]
(e) (i)	State the two major factors that affect the numerical magnitude of a lattice energy.
	[2]
(ii)	For each factor you have identified in (e)(i), state whether it tends to make the lattice energy of radium sulfide more or less exothermic than that of sodium chloride.
	Explain your answer.
	[2]
(iii)	The lattice energies of sodium chloride, NaC l , and radium sulfide, RaS, are $-771kJmol^{-1}$ and $-2612kJmol^{-1}$, respectively.
	Identify the dominant factor in determining the relative numerical magnitudes of the lattice energies of radium sulfide and sodium chloride.
	Explain your answer.
	[1]
	[Total: 13]

(d) Calculate the standard enthalpy change of formation, $\Delta H_{\,\rm f}^{\,\rm e},$ of radium sulfide.

${\bf Answer:}$


Question	Answer	Marks
(a)	 enthalpy / energy change / given out / evolved / released one mole is formed / made [1] 	2
	 of compound / solid / lattice / crystal (from) gaseous ions [1] 	
(b)b	$S^-(g) + e^- \rightarrow S^{2-}(g) [1]$	1
(c)c	(555 + 200 – 532 = 223, 223 × 8 = 1784)	3
	M1 selecting correct data 555, 200, 532 only , (ignore signs and multipliers) [1]	
	M2 evaluation to give +223 [1]	
	M3 multiplying M2 by 8 and evaluation ans (+) 1784 [1]	
(d)	(1619 + 555 – 2612 = –438)	2
	M1 selecting correct data 1619 555 2612 only, (ignore signs and multipliers) [1]	
	M2 evaluation to give –438 [1]	
(e)(i)	ionic radius / size / sum of ionic radii [1]	2
	ionic charge / product of ionic charges [1]	
(e)(ii)	M1 (size tends to make ΔH^o_{latt} of radium sulfide) less exothermic since the ions are larger [1]	2
	M2 (charge tends to make ΔH^{o}_{latt} of radium sulfide) less exothermic since the ions are more highly charged [1]	
(e)(iii)	(ionic) charge (since)	1
	AND	
	ΔH^{o}_{latt} of radium sulfide is more exothermic [1]	

7. 9	701_:	s20_qp_42 Q: 7		
(a)	(i)	Define the term electron affinity.		
			[2	?]
	(ii)	Define the term lattice energy.		
			[2	?]
(b)		e the following data and relevant data thalpy change of formation of zinc brom	from the $Data\ Booklet$ to calculate a value for the side, $ZnBr_2(s)$.	е
	You	u might find it helpful to construct an en	ergy cycle.	
	eled	ctron affinity of Br(g)	= -325 kJ mol ⁻¹	

 $= -2678 \, \text{kJ} \, \text{mol}^{-1}$

enthalpy change of atomisation of $Zn(s) = +131 \text{ kJ mol}^{-1}$ enthalpy change of vaporisation of $Br_2(I) = +31 \text{ kJ mol}^{-1}$

lattice energy of ZnBr₂(s)

(c) The lattice energies of $\rm ZnBr_2,\,ZnC\it{l}_2$ and ZnO are shown.

compound lattice energy/kJmo		
ZnBr ₂	-2678	
$ZnCl_2$	-2734	
ZnO	-3971	

(i)	Explain why there is a difference between the lattice energies of ${\sf ZnBr_2}$ and ${\sf ZnCl_2}$.	
(ii)	Explain why there is a difference between the lattice energies of $ZnCl_2$ and ZnO .	
		[1]
	то	tal: 10]

Answer:

Question	Answer	Marks
(a)(i)	 energy change when one electron is added to each atom /ion in one mole of gaseous atoms /ions 	2
	Award one mark for two correct statements. Award two marks for four correct statements	
(a)(ii)	M1 energy change when 1 mole of an ionic compound is formed M2 from gas phase ions/ gaseous ions	2
Question	Answer	Marks
(b)	M1 use of data (with no multipliers) 31, 131, -2678	4
	M2 extraction of data 908, 1730, 193	
	M3 use of (2 x-325)	
	M4 evaluation of their expression correctly, as shown	
	$\Delta H_{\rm f}({\sf ZnBr_2}) = 131 + (908 + 1730) + 193 + 31 + (2 \text{ x-}325) + (-2678)$ = -335 kJ mol ⁻¹ [4]	
(c)(i)	Br is a largest ion/larger ion than C t so attraction between Br and Zn $^{2+}$ is smaller	1
(c)(ii)	O^{2-} is a smallest ion/smaller ion than Ct AND O^{2-} has the highest charge/ higher charge than Ct (so attraction between O^{2-} and Zn^{2+} is larger)	1

į	2		
Ī	Ξ	7	
)	
ı		١	
•	_	•	
		•	
ŀ	-	-	
	7	,	
		-	
L	1	J	
	-	,	
4	-		
	_		
•	5		
•	-		
4	1		
•	v	,	
•	_		
L	1	J	
	>		
	>		
•	5		
1	5	•	

8. $9701 _s19 _qp_41 Q: 6$

(a) Complete the table by placing **one** tick (✓) in each row to indicate the sign of each type of energy change under standard conditions.

energy change	always positive	always negative	either negative or positive
bond energy			
enthalpy change of formation			

[1]

(b)	Explain	what is	s meant by	v the	term	enthalpv	change	of aton	าisation
\ <i>/</i>				,					

[1]

(c) The overall reaction for the atomisation of liquid bromine molecules, $Br_2(I)$, is shown.

$$Br_2(I) \rightarrow 2Br(g)$$

This happens via a two-step process.

- Construct a labelled energy cycle to represent this atomisation process, including state symbols.
- Use your cycle and relevant data from the Data Booklet to calculate the enthalpy change of vaporisation of Br₂(I), ΔH^e_{vap}.

The enthalpy change of atomisation of bromine, $\Delta H_{\rm at}$, = +112 kJ mol⁻¹.

$$\Delta H_{\text{vap}}^{\Theta} = \dots kJ \, \text{mol}^{-1} \, [3]$$

(d) Suggest how the $\Delta H_{\text{vap}}^{\Theta}$ of iodine, $I_2(I)$, would compare to that of bromine, $Br_2(I)$. Explain your answer.

......[1]

(i) Explain what is meant by the term enthalpy change of hydration.	
	[1]
(ii) Suggest why the enthalpy change of hydration of Br ⁻ (g) is more exothermic than that I ⁻ (g).	of
	[2]
[Total:	9]

Answer:

Question			Answe	r			Marks
(a)		energy change	always positive	always negative	either negative or positive		
		bond energy	✓				
		enthalpy of formation			✓		
	both ticks correct					•	
(b)	(energy change) when	1 mole of gaseous atoms ar	e formed (froi	m an element i	in its standard state)	
(c)	M2: use of 1 × 193 and	Bond energy (Br-Br) g) ulae and state symbols	//2 and M3]				
(d)	more endothermic and	greater Van der Waals / Lond	on / induced o	dipole-dipole fo	orces both		
(e)(i)	(energy change) when	1 mole of gaseous ions is di	ssolved in (ar	excess of) wa	ater		
(e)(ii)	M1: Br has a smaller id	onic radii					
	I						

9. 9701_s19_qp_42 Q: 5

(a) Complete the table by placing **one** tick (✓) in each row to indicate the sign of each type of energy change under standard conditions.

energy change	always positive	always negative	either negative or positive
lattice energy			
enthalpy change of neutralisation			

[1]

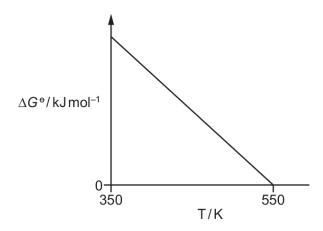
(b)	Define, in words, the term enthalpy change of solution.	
		۲ 1

(c) The following enthalpy changes are given.

enthalpy change	value/kJ mol ⁻¹
standard enthalpy change of formation, $\Delta H_{\rm f}^{\rm e}$, for K ₃ PO ₄ (s)	-2035
standard enthalpy change, ΔH° , for P(s) + 2O ₂ (g) + 3e ⁻ \rightarrow PO ₄ ³⁻ (aq)	-1284
standard enthalpy change, $\Delta H^{\rm e}$, for K(s) \rightarrow K ⁺ (aq) + e ⁻	-251

Determine the standard enthalpy change of solution of potassium phosphate, $K_3PO_4(s)$. It may be helpful to draw a labelled energy cycle.

(d) Some lattice energy values are shown in the table.


compound	lattice energy value / kJ mol⁻¹
CaBr ₂ (s)	-2176
KBr(s)	– 679

Suggest an explanation for why $\Delta H_{\text{latt}}^{\Theta}$ CaBr₂ is **more** exothermic than $\Delta H_{\text{latt}}^{\Theta}$ KBr.

[2]

(e) For a particular gas phase reaction the variation in standard Gibbs free energy change, ΔG° , with temperature is shown.

Assume standard enthalpy change, ΔH^{e} , and standard entropy change, ΔS^{e} , remain constant with temperature.

(i) Write the equation that relates ΔG° to ΔH° and ΔS° .

F	4.1
	11
	11

(ii) Use this equation to explain why ΔG° becomes less positive as temperature increases in this reaction.

[1]

[Total: 9]

${\bf Answer:}$

Question	Answer N			Marks		
(a)	energy change always always either negative positive negative or positive				1	
	lattice energy		✓			
	enthalpy of neutralisation ✓					
	both [1]					
(b)	(energy change) when 1 mole of solute is dissolved in an infinite amount of water to form a dilute solution			1		
(c)	calculation of ΔH^o_{sol} with -251 , -1284 and -2035 only and two correct signs [1] calculation of ΔH^o_{sol} with -251 , -1284 and -2035 only and correct signs OR calculation of ΔH^o_{sol} with (-251×3) , -1284 and -2035 only and two correct signs [2]			3		
	$\Delta H^{\text{P}}_{\text{sol}} = (3 \times -251) + (-1284) - (-2035) = -2 \text{ (kJ mol}^{-1}) [3]$					
(d)	Ca ²⁺ have a higher charge / greater charge density [1] ora stronger electrostatic forces between Br and Ca ²⁺ [1]			2		
(e)(i)	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ} [1]$			1		
(e)(ii)	$T\Delta S$ is more positive OR $-T\Delta S$ becomes more negative [1]			1		

10. 9	9701_	_w19_qp_41 Q: 3	
(a)	Ехр	plain what is meant by the term entropy of a system.	
			[1]
(b)		te and explain whether the entropy change of each of the following processes is positive ative. Do not consider the entropy change of the surroundings.	or
	•	liquid water at 80 °C is cooled to 60 °C	
	The	entropy change is because	
	•	solid calcium chloride is added to water and the mixture is stirred	
	The	entropy change is because	
	•	the change corresponding to the lattice energy of calcium chloride, $\Delta H_{\rm latt}$ CaC $l_2(s)$, take place	es
	The	entropy change is because	
			[3]
(c)	The	e reaction $ZnCO_3(s) \rightarrow ZnO(s) + CO_2(g)$ is not spontaneous at room temperature.	
	(i)	Give the full name for the term ΔG° .	
			[1]
	(ii)	Describe how the temperature at which the reaction becomes spontaneous can calculated. Include an equation in your answer.	be
		equation	
			[2]

[Total: 7]

${\bf Answer:}$

Question	Answer	Marks
(a) a measure / degree of disorder / randomness of a system		1
(b) M1: negative – molecules have less energy in the system		3
	M2: positive – solid being converted into an aqueous solution	
	M3: negative – gaseous ions being converted into a solid	
(c)(i)	(standard) Gibbs free energy <u>change</u>	1
(c)(ii)	M1 : $(\Delta)G = \Delta H - T\Delta S$	2
	M2: description of calculating the minimum value of T for which ΔG is zero / becomes negative OR T = ΔH / ΔS [1]	

11. 9701_w19_qp_42 Q: 4

The table shows some standard entropy data.

substance	standard entropy, S° /JK ⁻¹ mol ⁻¹
PbO ₂ (s)	77
PbO(s)	69
O ₂ (g)	205

Lead(IV) oxide, PbO₂, decomposes to lead(II) oxide, PbO, and oxygen when heated.

$$2PbO_2(s) \rightarrow 2PbO(s) + O_2(g)$$
 $\Delta H^{\circ} = +118 \text{ kJ mol}^{-1}$

(a) Use the data to calculate the value of ΔS^{e} for this reaction.

$$\Delta S^{\circ} = J K^{-1} mol^{-1}$$
 [2]

(b) Use the value of ΔH° and your answer to (a) to calculate the temperature at which this reaction becomes feasible.

(c) Solid lead(II) oxide can be made by heating lead metal in air.

Predict the sign of the standard entropy change of this reaction. Explain your answer.

[1]

[Total: 6]

${\bf Answer:}$

Question	Answer	Marks
(a)	M1: correct use of stoichiometry	2
	M2 : answer + 189	
(b)	M1: States or uses correct form of Gibbs equation $\Delta G = \Delta H - T \Delta S$	3
	M2: appreciates / includes $\Delta G = 0$ at temperature required	
	M3: uses 1000 correctly and answer +624(.339)	
	Award 3 marks for correct answer	
(c)	negative and decrease in number / amount of gas molecules	1

(a)	Write an equation for the reaction of sodium with oxygen, forming sodium oxide.
	Include state symbols.

(b)	Explain why sodium oxide has a high melting point.

(c) When sodium oxide reacts with water an alkaline solution is obtain	
to when sodium oxide reacts with water an alkaline solution is obta	ned

(i)	Explain why the solution obtained is alkaline. You should use the Brønsted-Lowry theory of acids and bases in your answer.

(ii)	Calculate the pH of the solution obtained when 3.10 g of sodium oxide are added to 400 cm ³
	of water.

nH =	[3.

(d) Use the data below, and other suitable data from the *Data Booklet*, to calculate the lattice energy of sodium oxide, $\Delta H_{\text{latt}}^{\text{e}} \text{Na}_2 \text{O(s)}$.

energy change	value / kJ mol⁻¹
standard enthalpy change of formation of sodium oxide, $\Delta H_{\mathrm{f}}^{\mathrm{e}} \mathrm{Na_2O(s)}$	-416
standard enthalpy change of atomisation of sodium, $\Delta H_{\mathrm{at}}^{\mathrm{e}}\mathrm{Na}(\mathrm{s})$	+109
electron affinity of O(g)	-142
electron affinity of O⁻(g)	+844

$\Delta H_{\rm latt}^{\Theta}$	Nla	O(c)	_	 k Imol-1	[/1]
$\Delta \Pi_{latt}$	INa ₂	O(S)	_	 KUTTIOI .	[4]

(e) State how $\Delta H_{\rm latt}^{\rm e}$ Na₂S(s) differs from $\Delta H_{\rm latt}^{\rm e}$ Na₂O(s). Indicate this by placing a tick (\checkmark) in the appropriate box in the table.

$\Delta H_{\text{latt}}^{\text{e}} \text{Na}_2 \text{S(s)}$ is more exothermic than $\Delta H_{\text{latt}}^{\text{e}} \text{Na}_2 \text{O(s)}$	$\Delta H_{\mathrm{latt}}^{\mathrm{e}} \mathrm{Na_2S(s)}$ is the same as $\Delta H_{\mathrm{latt}}^{\mathrm{e}} \mathrm{Na_2O(s)}$	$\Delta H_{\mathrm{latt}}^{\mathrm{e}} \mathrm{Na_2S(s)} \mathrm{is \ less}$ exothermic than $\Delta H_{\mathrm{latt}}^{\mathrm{e}} \mathrm{Na_2O(s)}$

Explain your answer.	
	[2]

[Total: 15]

Answer:

Question	Answer	Marks
(a)	$4Na(s) + O_2(g) \rightarrow 2Na_2O(s)$	
	balanced with all formulae correct	1
	state symbols	1
(b)	giant ionic	1
	strong bond / attraction between AND positive and negative ions / anions and cations / Na ⁺ and O ²⁻ / oppositely charged ions	1
(c)(i)	the reaction produces sodium hydroxide / hydroxide ions / OH ⁻ ions	1
	the hydroxide ions can receive / accept H ⁺ ions / protons	1
(c)(ii)	Calculation of Na ₂ O moles 3.10 g / 62 OR 0.05	1
	Calculation of [OH] 0.05 × (2 / 0.400) = 0.25 mol dm ⁻³	1
	Calculation of pH -log 0.25 = 0.60 14 - 0.60 = 13.40	1
(d)	use of (2 × 109) or 218 and (2 × 494) or 988	1
	use of (0.5 × 496) or 248	1
	use of 416, 142, 844	1
	evaluation of expression correctly $\Delta H_{\text{lat}} = -416 - (2 \times 109) - (0.5 \times 496) - (2 \times 494) - (-142 + 844) = -2572$	1
(e)	the lattice energy of Na ₂ S is less exothermic	1
	the sulfide ion is larger than the oxide ion / S ²⁻ larger than O ² / ionic radii quoted 0.184 nm and 0.140 nm AND less attraction (between the ions)/bonds are weaker	1

13. 9701_s18_qp_42 Q: 1

Silicon tetrachloride, $SiCl_4$, is formed when silicon reacts with chlorine under suitable conditions. It is a colourless liquid with a low boiling point.

(a) Explain why $\mathrm{SiC}l_{\scriptscriptstyle 4}$ has a low boiling p	oint.
--	-------

		[2]

- (b) $SiCl_4$ reacts with water to produce an acidic solution.
 - (i) Write an equation for this reaction.
 - (ii) Describe **two** visual observations when silicon tetrachloride is added drop by drop to a small amount of water.

1	
2	

......[1]

(iii) A sample of $0.8505\,\mathrm{g}$ of $\mathrm{SiC}\,l_4$ is added to $800\,\mathrm{cm}^3$ of water. All of the soluble acidic product is dissolved in the water.

Calculate the pH of the solution obtained.

[2]

(c) (i) Silicon tetrachloride can be prepared according to reaction 1.

$$Si(s) + 2Cl_2(g) \rightarrow SiCl_4(I)$$
 $\Delta S^{\circ} = -225.7 \,\mathrm{J} \,\mathrm{K}^{-1} \,\mathrm{mol}^{-1}$

standard entropy of silicon, S° Si(s)	18.7 J K ⁻¹ mol ⁻¹
standard entropy of silicon tetrachloride, S $^{\circ}$ SiC $l_{_4}(I)$	239.0 J K ⁻¹ mol ⁻¹

Calculate the standard entropy of chlorine, S° $Cl_2(g)$. Show all your working.

$$S^{e} Cl_{2}(g) = J K^{-1} mol^{-1}$$
 [2]

(ii)	Explain why the	entrony	change	for reaction	1 is negative
(11)	Explain why the	entropy	cnange	for reaction	i is negative.

[11]

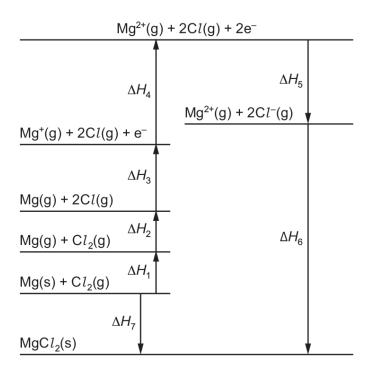
(d) The standard enthalpy change of formation of silicon tetrachloride, ΔH_f^{e} SiC $l_4(I)$, is -640 kJ mol⁻¹.

Reaction 1 is spontaneous at lower temperatures, but it is not spontaneous at very high temperatures.

Calculate the temperature above which reaction 1 is **not** spontaneous.

[Total: 13]

${\bf Answer:}$


Question	Answer	Marks
(a)	simple molecular / simple covalent	1
	weak London forces / id-id forces / VDW forces or London forces / id-id forces / VDW forces AND small amount of energy to break	1
(b)(i)	$SiCl4 + 2H2O \rightarrow SiO2 + 4HCl$ or $SiCl4 + 4H2O \rightarrow Si(OH)4 + 4HCl$	1
(b)(ii)	white solid	1
	steamy fumes / white fumes / misty fumes	1
(b)(iii)	moles of SiCl ₄ = 0.8505 / 170.1 = 0.005	1
	conc of H ⁺ (0.005) × 4 / 0.8 = 0.025	1
	pH = -log(0.025) = 1.6	1
(c)(i)	-225.7 = 239.0 - (18.7 + 2x)	1
	x = +223	1
(c)(ii)	decrease in number of moles of gas /more moles of gas on left / reactants (ora)	1
(d)	use of $\Delta G = \Delta H - T\Delta S$ with $\Delta G = 0 / \Delta G > 0$ or $T = \Delta H / \Delta S$ or $T = (640 \ 000 / 225.7)$	1
	2836 / 2840 (2835.6)	1

(a) Complete the table using ticks (✓) to indicate whether the sign of each type of energy change, under standard conditions, is always positive, always negative or could be either positive or negative.

energy change	always positive	always negative	either positive or negative
electron affinity			
enthalpy change of atomisation			
ionisation energy			
lattice energy			

[2]

(b) The Born-Haber cycle for magnesium chloride is shown.

(i) Explain why ΔH_4 is greater than ΔH_3 .

......[1]

(ii) What names are given to the enthalpy changes ΔH_6 and ΔH_7 ?

ΔH_6	 	
Ü		

[1]

(c)	Chlorine	is in	Group	17

Suggest the trend in the first electron affinity of the elements in Group 17. Explain your answ	ver.
	[2]

(d) The equation for the formation of magnesium oxide from its elements is shown.

$$Mg(s) + \frac{1}{2}O_2(g) \rightarrow MgO(s)$$
 $\Delta H^{o} = -602 \text{ kJ mol}^{-1}$

substance	S ^e /JK ⁻¹ mol ⁻¹	
Mg(s)	32.7	
O ₂ (g)	205	
MgO(s)	26.9	

Use the equation and the data given in the table to calculate ΔG° for the reaction at 25 °C.

$$\Delta G^{\circ}$$
 = units[4]

[Total: 10]

Answer:

Question	Answer				Marks	
(a)		enthalpy change	positive	negative	either positive or negative	2
		electron affinity			✓	
		enthalpy change of atomisation	✓			
		enthalpy change of ionisation	✓			
		lattice enthalpy		✓		
(b)(i)	the second electron is removed from a (more) positively charged ion				1	
(b)(ii)	ΔH_6 is lattice (energy/enthalpy) AND ΔH_7 is (energy/enthalpy of) formation				1	
(c)	the electron affinity becomes less exothermic/negative down the Group 17			1		
	electron affinity depends (mainly) on the electron-nucleus distance which increases down Group 17				1	
(d)	M1 correct use of $\Delta G = \Delta H - T\Delta S$			1		
	M2 ΔS = 26.9	$-(32.7 + 102.5) = -108.3 \mathrm{J K^{-1} mol^{-1}} \mathrm{O}$	R –0.1083 kJ K ^{–1} r	mol ⁻¹		1
	M3 ∆G = −602	2 – (298 × (–0.1083)) = –570				1
	M4 units: kJ m	ol ⁻¹				1