IGCSE Additional Mathematics (0606) Paper 2

Exam Series: May/June 2012 - Oct/Nov 2022

Format Type B: Each question is followed by its answer scheme

EXAMINENT.COM Eminent Exam Preparation Resources

Introduction

Each Topical Past Paper Questions Workbook contains a comprehensive collection of hundreds of questions and corresponding answer schemes, presented in worksheet format. The questions are carefully arranged according to their respective chapters and topics, which align with the latest IGCSE or AS/A Level subject content. Here are the key features of these workbooks:

- 1. The workbook covers a wide range of topics, which are organized according to the latest syllabus content for Cambridge IGCSE or AS/A Level exams.
- 2. Each topic includes numerous questions, allowing students to practice and reinforce their understanding of key concepts and skills.
- 3. The questions are accompanied by detailed answer schemes, which provide clear explanations and guidance for students to improve their performance.
- 4. The workbook's format is user-friendly, with worksheets that are easy to read and navigate.
- 5. This workbook is an ideal resource for students who want to familiarize themselves with the types of questions that may appear in their exams and to develop their problem-solving and analytical skills.

Overall, Topical Past Paper Questions Workbooks are a valuable tool for students preparing for IGCSE or AS/A Level exams, providing them with the opportunity to practice and refine their knowledge and skills in a structured and comprehensive manner. To provide a clearer description of this book's specifications, here are some key details:

- Title: Cambridge IGCSE Additional Mathematics (0606) Paper 2 Topical Past Paper Questions Workbook
- Subtitle: Exam Practice Worksheets With Answer Scheme
- Examination board: Cambridge Assessment International Education (CAIE)
- Subject code: 0606
- Years covered: May/June 2012 Oct/Nov 2022
- \bullet Paper: 2
- Number of pages: 1460
- Number of questions: 716

Contents

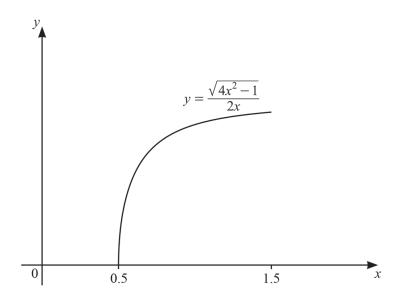
1	Functions	7
2	Quadratic functions	47
3	Equations, inequalities and graphs	133
4	Indices and surds	187
5	Factors of polynomials	249
6	Simultaneous equations	289
7	Logarithmic and exponential functions	317
8	Straight line graphs	441
9	Circular measure	553
10	Trigonometry	611
11	Permutations and combinations	757
12	Series	815
13	Vectors in two dimensions	907
14	Differentiation and integration	1013

Chapter 1

Functions

1. 0606_m21_qp_22 Q: 10

The function f is defined by $f(x) = \frac{\sqrt{4x^2 - 1}}{2x}$ for $0.5 \le x \le 1.5$. The diagram shows a sketch of y = f(x).



(a) (i) It is given that f^{-1} exists. Find the domain and range of f^{-1} .

[3]

(ii) Find an expression for $f^{-1}(x)$.

[3]

(b) The function g is defined by $g(x) = e^{x^2}$ for all real x. Show that $gf(x) = e^{\left(1 - \frac{a}{bx^2}\right)}$, where a and b are integers. [2]

(a)(i)	Range f^{-1} : $0.5 \leq f^{-1} \leq 1.5$	B1	
	Domain f ⁻¹ : $0 \le x \le \frac{2\sqrt{2}}{3}$ oe	B2	B1 for 0 and $\frac{2\sqrt{2}}{3}$ in an incorrect inequality
			or for $x \ge 0$ or $x \le \frac{2\sqrt{2}}{3}$
(a)(ii)	Correctly collects terms ready to factorise e.g. $4x^2 - 4x^2y^2 = 1$ or $4y^2x^2 - 4y^2 = -1$ or simplifies to subject in one term only e.g. $\frac{1}{4y^2} = 1 - x^2$ or $-\frac{1}{4x^2} = y^2 - 1$ oe	M1	
	Correctly factorises and/or rearranges at least as far as: $x^2 = \frac{1}{4-4y^2}$ or $y^2 = \frac{-1}{4x^2-4}$ oe	M1	FT only if of equivalent difficulty
	$\begin{bmatrix} f^{-1}(x) = \end{bmatrix} \sqrt{\frac{1}{4 - 4x^2}} \text{ or}$ $[y =] \sqrt{\frac{-1}{4x^2 - 4}} \text{ oe, isw}$	A1	
(b)	Correct order of composition: $gf(x) = e^{\left(\frac{\sqrt{4x^2-1}}{2x}\right)^2}$	M1	
	$gf(x) = e^{\left(1 - \frac{1}{4x^2}\right)}$ is w	A1	

 $2.\ 0606_s21_qp_22 \ Q:\ 13$

The functions f and g are defined, for x > 0, by

$$f(x) = \frac{2x^2 - 1}{3x},$$

$$g(x) = \frac{1}{x}.$$

$$fg(x).$$
[2]

(a) Find and simplify an expression for fg(x).

- (b) (i) Given that f^{-1} exists, write down the range of f^{-1} . [1]
 - (ii) Show that $f^{-1}(x) = \frac{px + \sqrt{qx^2 + r}}{4}$, where *p*, *q* and *r* are integers. [4]

Question	Answer	Marks	Partial Marks
(a)	$[fg(x) =] \frac{2\left(\frac{1}{x}\right)^2 - 1}{3\left(\frac{1}{x}\right)} \text{ oe}$	M1	
	$[fg(x) =]\frac{2 - x^2}{3x}$ or $\frac{2}{3x} - \frac{x}{3}$	A1	mark final answer
(b)(i)	$f^{-1} > 0$	B1	
(b)(ii)	$2x^{2} - 3xy - 1 = 0$ or $2y^{2} - 3xy - 1 = 0$	B1	
	Correctly applies quadratic formula: $[x =] \frac{-(-3y) \pm \sqrt{(-3y)^2 - 4(2)(-1)}}{2(2)} \text{ oe}$ or $[y =] \frac{-(-3x) \pm \sqrt{(-3x)^2 - 4(2)(-1)}}{2(2)} \text{ oe}$	M1	FT <i>their</i> $2x^2 - 3xy - 1 = 0$ or $2y^2 - 3xy - 1 = 0$ with at most one sign error in the equation
	Justifies the positive square root at some point	B 1	
	$f^{-1}(x) = \frac{3x + \sqrt{9x^2 + 8}}{4} cao$	A1	must be a function of x

[1]

 $3.\ 0606_s21_qp_23 \ Q: 9$

- (a) The function f is defined, for all real x, by $f(x) = 13 4x 2x^2$.
 - (i) Write f(x) in the form $a + b(x+c)^2$, where a, b and c are constants. [3]

- (ii) Hence write down the range of f.
- (b) The function g is defined, for x ≥ 1, by g(x) = √x² + 2x 1.
 (i) Given that g⁻¹(x) exists, write down the domain and range of g⁻¹. [2]
 - (ii) Show that $g^{-1}(x) = -1 + \sqrt{px^2 + q}$, where p and q are integers. [4]

Answ	/er:

14

(a)(i)	$15 - 2(x+1)^2$ isw	B 3	B1 for $(x+1)^2$ B1 for $a = 15$
(a)(ii)	f ≤ 15	B1	STRICT FT their a
(b)(i)	Domain: $x \ge \sqrt{2}$	B1	
	Range: $g^{-1} \ge 1$	B 1	
(b)(ii)	$x^{2} + 2x + (-1 - y^{2}) = 0$ or $y^{2} + 2y + (-1 - x^{2}) = 0$	B1	
	Correctly applies quadratic formula: $[x =] \frac{-2 \pm \sqrt{2^2 - 4(1)(-1 - y^2)}}{2}$ or $[y =] \frac{-2 \pm \sqrt{2^2 - 4(1)(-1 - x^2)}}{2}$	M1	FT their $x^2 + 2x + (-1 - y^2) = 0$ or $y^2 + 2y + (-1 - x^2) = 0$ with at most one sign error in the equation
	Justifies the positive square root at some point	B1	
	Correct completion to $g^{-1}(x) = -1 + \sqrt{x^2 + 2}$	A1	

EXAMINENT Eminent Exam Preparation Resources The following functions are defined for x > 1.

$$f(x) = \frac{x+3}{x-1}$$
 $g(x) = 1+x^2$ [2]

(a) Find fg(x).

(b) Find $g^{-1}(x)$.

[2]

(c) DO NOT USE A CALCULATOR IN THIS PART OF THE QUESTION.

Solve the equation f(x) = g(x).

[5]

(a)	$[fg(x) =] \frac{x^2 + 4}{x^2}$ oe, final answer	2	B1 for an attempt at the correct order of composition with at most one error
(b)	Complete, correct method to find the inverse	M1	
	$\left[g^{-1}(x)=\right]\sqrt{x-1}$ final answer	A1	
(c)	$x^3 - x^2 - 4 = 0$	M1	condone one sign or arithmetic error
	Shows $x - 2$ is a factor or shows that $x = 2$ is a solution	M1	
	Uses $x - 2$ is a factor to find $x^2 + x + 2$	B2	B1 for a quadratic factor with 2 terms correct
	Indicates that $x^2 + x + 2$ has no real roots and states $x = 2$ as the only solution	A1	dep on all previous marks awarded

$5.\ 0606 _ s19 _ qp _ 22$ Q: 12

- (a) The functions f and g are defined by f(x) = 5x - 2 for x > 1, $g(x) = 4x^2 - 9 \text{ for } x > 0.$
 - (i) State the range of g. [1]
 - (ii) Find the domain of gf. [1]

(iii) Showing all your working, find the exact solutions of gf(x) = 4. [3]

18

- **(b)** The function h is defined by $h(x) = \sqrt{x^2 1}$ for $x \le -1$.
 - (i) State the geometrical relationship between the graphs of y = h(x) and $y = h^{-1}(x)$. [1]

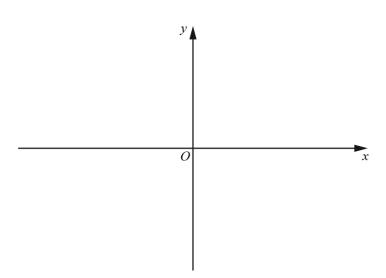
(ii) Find an expression for $h^{-1}(x)$.

[3]

(a)(i)	g > -9	B1	
(a)(ii)	x > 1	B1	
(a)(iii)	$[gf(x) =] 4(5x-2)^2 - 9$	B1	
	$100x^{2} - 80x - 38 = 0$ or $(5x - 2)^{2} = \frac{45 + 9}{4}$	M1	
	$[x =] \frac{-(-80) \pm \sqrt{(-80)^2 - 4(100)(-38)}}{2(100)}$ leading to $\frac{4 + 3\sqrt{6}}{10}$ oe only or $\frac{1}{5} \left(2 + \sqrt{\frac{54}{4}}\right)$ or better only	A1	
(b)(i)	(They are) reflections (of each other) in (the line) $y = x$ oe	B1	
(b)(ii)	$x^2 = y^2 + 1$ or $y^2 = x^2 + 1$	M1	
	$x = [\pm]\sqrt{y^2 + 1}$ or $y = [\pm]\sqrt{x^2 + 1}$	A1	
	$-\sqrt{x^2+1}$ nfww	A1	

20

(a) (i) On the axes below, sketch the graph of y = |(x+3)(x-5)| showing the coordinates of the points where the curve meets the x-axis. [2]



- (ii) Write down a suitable domain for the function f(x) = |(x+3)(x-5)| such that f has an inverse. [1]
- (b) The functions g and h are defined by

 $g(x) = 3x - 1 \qquad \text{for } x > 1,$ $h(x) = \frac{4}{x} \qquad \text{for } x \neq 0.$

- (i) Find hg(x).
- (ii) Find $(hg)^{-1}(x)$.

(c) Given that p(a) = b and that the function p has an inverse, write down $p^{-1}(b)$. [1]

EXAMINENT Eminent Exam Preparation Resources

[1]

[2]

(a)(i)	-3 5,	B2	B1 for correct shape B1 for roots marked on the graph or seen nearby provided graph drawn and one root is negative and one is positive
(a)(ii)	Any correct domain	B1	
(b)(i)	$\frac{4}{3x-1}$	B1	mark final answer
(b)(ii)	Correct method for finding inverse function e.g. swopping variables <u>and</u> changing subject or vice versa; or indicates $(hg)^{-1}(x) = g^{-1}h^{-1}(x)$ and finds $g^{-1}(x) = \frac{x+1}{3}$ and $h^{-1}(x) = \frac{4}{x}$	M1	FT only if <i>their</i> hg(x) of the form $\frac{a}{bx+c}$ where <i>a</i> , <i>b</i> and <i>c</i> are integers
	$\left[(hg)^{-1}(x) = \right] \frac{1}{3} \left(\frac{4}{x} + 1 \right) \text{ oe isw or}$ $\left[(hg)^{-1}(x) = \right] \frac{4+x}{3x} \text{ oe isw}$	A1	FT their $(hg)^{-1}(x) = \frac{a - cx}{bx}$ oe If M0 then SC1 for their $hg(x)$ of the form $y = \frac{a}{x} + b$ oe leading to their $(hg)^{-1}(x)$ of the form $y = \frac{a}{x - b}$ isw
(c)	<i>a</i> cao	B1	

WWW.EXAMINENT.COM

22

The function f is defined by $f(x) = \frac{1}{2x-5}$ for x > 2.5.

(i) Find an expression for $f^{-1}(x)$.

[2]

[1]

(ii) State the domain of $f^{-1}(x)$.

(iii) Find an expression for $f^2(x)$, giving your answer in the form $\frac{ax+b}{cx+d}$, where a, b, c and d are integers to be found. [3]

EXAMINENT Eminent Exam Preparation Resources

24

(i)	Putting $y = f(x)$, changing subject to x and swopping x and y or vice versa	M1	
	$f^{-1}(x) = \frac{1}{2} \left(\frac{1}{x} + 5 \right)$ or $\frac{5x+1}{2x}$ oe isw	A1	
(ii)	x > 0 oe	B1	
(iii)	$\frac{1}{2\left(\frac{1}{2x-5}\right)-5}$	B1	
	$\frac{\frac{1}{2-5(2x-5)}}{2x-5}$ oe	M1	FT if expression of equivalent difficulty e.g. $\frac{1}{\left(\frac{1}{2x-5}\right)-5}$
	Completes to $\frac{2x-5}{-10x+27}$ oe final answer	A1	

The functions f and g are defined for real values of $x \ge 1$ by

$$f(x) = 4x - 3,$$

 $g(x) = \frac{2x + 1}{3x - 1}.$

(i) Find
$$gf(x)$$
.

(ii) Find $g^{-1}(x)$.

(iii) Solve fg(x) = x - 1.

[3]

[2]

[4]

26

(i)	$gf(x) = \frac{2(4x-3)+1}{3(4x-3)-1}$	M1	
	$=\frac{8x-5}{12x-10}$	A1	
(ii)	y(3x-1) = 2x+1 or $x(3y-1) = 2y+1$	B1	
	(3y-2)x = y+1 or $(3x-2)y = x+1$	M1	
	$g^{-1}(x) = \frac{x+1}{3x-2}$	A1	
(iii)	$4\left(\frac{2x+1}{3x-1}\right) - 3\left[=x-1\right]$	B1	
	$3x^2 - 3x - 6 \text{oe}$	B1	
	3(x+1)(x-2)	M1	
	x = 2 only	A1	

[1]

[2]

9. $0606_{m17}qp_{22}$ Q: 11

The functions f and g are defined by

$$f(x) = \frac{x^2 - 2}{x}$$
 for $x \ge 2$,
 $g(x) = \frac{x^2 - 1}{2}$ for $x \ge 0$.

(i) State the range of g.

(ii) Explain why fg(1) does not exist.

(iii) Show that $gf(x) = ax^2 + b + \frac{c}{x^2}$, where *a*, *b* and *c* are constants to be found. [3]

28

(v) Show that
$$f^{-1}(x) = \frac{x + \sqrt{x^2 + 8}}{2}$$
.

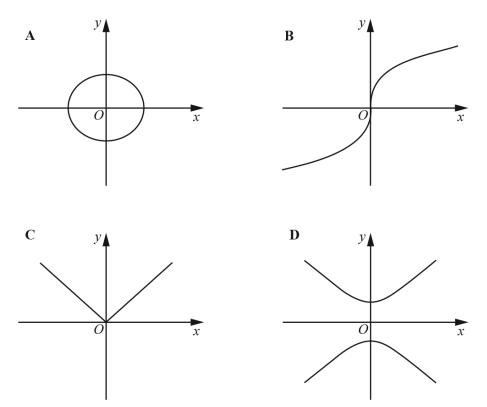
[4]

EXAMINENT Eminent Exam Preparation Resources

(i)
$$g \ge -\frac{1}{2}$$

(ii) $g(1) = 0$
valid comment e.g. domain of f is $x \ge 2$
(iii) $\left(\frac{x^2-2}{x}\right)^2 - 1$
 $\left(\frac{x^2}{x}\right)^2 = \frac{1}{2}$
 $\left(\frac{x^2-2}{x}\right)^2 = \frac{x^4-4x^2+4}{x^2}$ soi
 $\frac{1}{2}x^2 - \frac{5}{2} + \frac{2}{x^2}$
(iv) $x \ge 2$
(iv) $x \ge 2$
 $\left(\frac{x^2}{x} - \frac{1}{2} + \frac{2}{x^2}\right)$
 $\left(\frac{x^2}{x} - \frac{1}{2} + \frac{2}{x^2}\right)$
 $\left(\frac{x^2}{x} - \frac{1}{2} + \frac{2}{x^2}\right)$
B1 or $\left(\frac{x-2}{x}\right)^2 = x^2 - 4 + \frac{4}{x^2}$
A1 or correct 3 term equivalent
or $a = 0.5, b = -2.5, c = 2$
(iv) $x \ge 2$
B1 or $y^2 - xy - 2 = 0$
 $\left[x = \frac{1-(-y) \pm \sqrt{(-y)^2 - 4(1)(-2)}}{2}$
Explains why negative square root should be
 $discarded$
 $f^{-1}(x) = \frac{x + \sqrt{x^2 + 8}}{2}$
A1 allow $y = \frac{x + \sqrt{x^2 + 8}}{2}$
If zero scored, allow SC2 for showing
correctly that the inverse of the given f^{-1}
is f .

10. $0606_{s17}qp_{23}$ Q: 2



The four graphs above are labelled A, B, C and D.

(i) Write down the letter of each graph that represents a function, giving a reason for your choice. [2]

(ii) Write down the letter of each graph that represents a function which has an inverse, giving a reason for your choice. [2]

((i)	B and C with valid reason	B2	B1 for one graph and valid reason or both graphs and no reason
((ii)	<i>B</i> only with valid reason	B2	B1 for graph <i>B</i> or valid reason

11.0606_w17_qp_23 Q:6

The functions f and g are defined for real values of x by

f(x) =
$$(x + 2)^2 + 1$$
,
g(x) = $\frac{x - 2}{2x - 1}$, $x \neq \frac{1}{2}$.
Find f²(-3). [2]

(ii) Show that $g^{-1}(x) = g(x)$.

(iii) Solve
$$gf(x) = \frac{8}{19}$$
.

E EXAMINENT Eminent Exam Preparation Resources

(i)

[3]

[4]

Answer:

(i)	$f^2 = f(f)$ used algebraic $([(x + 2)^2 + 1] + 2)^2 + 1$	M1	numerical or algebraic
	17	A1	
(ii)	$x = \frac{y-2}{2y-1}$	M1	change <i>x</i> and <i>y</i>
	$2xy - x = y - 2 \rightarrow y(2x - 1) = x - 2$	M1	M1dep multiply, collect <i>y</i> terms, factorise
	$y = \frac{x-2}{2x-1} \qquad \left[= g(x) \right]$	A1	correct completion
(iii)	$gf(x) = \frac{\left[(x+2)^2 + 1 \right] - 2}{2\left[(x+2)^2 + 1 \right] - 1} \text{oe}$	B1	
	$\frac{(x+2)^2 - 1}{2(x+2)^2 + 1} = \frac{8}{19}$ 3(x+2) ² = 27 oe 3x ² + 12x - 15 = 0	M1	<i>their</i> gf = $\frac{8}{19}$ and simplify to quadratic equation
	solve quadratic	M1	M1dep Must be of equivalent form
	x=1 $x=-5$	A1	

 $12.\ 0606_s14_qp_21 \ Q:\ 12$

The functions f and g are defined by

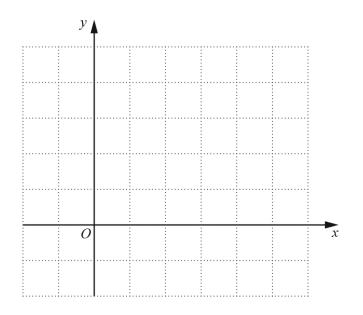
$$f(x) = \frac{2x}{x+1} \text{ for } x > 0,$$
$$g(x) = \sqrt{x+1} \text{ for } x > -1.$$
Find fg(8). [2]

(ii) Find an expression for $f^2(x)$, giving your answer in the form $\frac{ax}{bx+c}$, where a, b and c are integers to be found. [3]

(iii) Find an expression for $g^{-1}(x)$, stating its domain and range.

(i)

(iv) On the same axes, sketch the graphs of y = g(x) and $y = g^{-1}(x)$, indicating the geometrical relationship between the graphs. [3]



Answ	or
- 1 T T O W	· UL .

36

(i)	(2)	M1	or $fg(x) = \frac{2\sqrt{(x+1)}}{\sqrt{(x+1)+1}}$
	$\frac{f(3)}{\frac{6}{4}} oe$	M1 A1	or $\operatorname{Ig}(x) = \frac{1}{\sqrt{(x+1)+1}}$
	$\frac{-6}{4}$ oe		
	$\begin{pmatrix} 2x \end{pmatrix}$		
(ii)	$\frac{2\left(\frac{2x}{x+1}\right)}{\frac{2x}{x+1}+1}$	M1	allow omission of 2() in
	$\left \frac{2x}{x+1}+1\right $		numerator or $(\dots) + 1$ in denominator, but not
			both.
	A correct and valid step in simplification	dM1	e.g. multiplying numerator and denominator by $x + 1$, or
			simplifying $\frac{2x}{x+1} + 1$ to
			$\frac{2x+x+1}{x+1}$
	Correctly simplified to $\frac{4x}{3x+1}$	A1	<i>x</i> + 1
	3x+1		
(iii)	Putting $y = g(x)$,	M1	condone $x = y^2 - 1$; reasonable
	changing subject to x and swopping x and y or vice versa		attempt at correct method
	$g^{-1}(x) = x^2 - 1$	A1	condone $y =, f^{-1} =$
	(Domain) $x > 0$	B1	
	(Range) $g^{-1}(x) > -1$	B1	condone $y \ge -1$ $f^{-1} \ge -1$
(iv)			
		B1 + B1	correct graphs; -1 need not be
			labelled but could be implied by 'one square'
	*	D1	-
	-1	B1	idea of reflection or symmetry in line $y = x$ must be stated.

EXAMINENT Eminent Exam Preparation Resources The function f is such that $f(x) = 2 + \sqrt{x-3}$ for $4 \le x \le 28$.

- (i) Find the range of f. [2]
- (ii) Find $f^2(12)$.
- (iii) Find an expression for $f^{-1}(x)$.

The function g is defined by $g(x) = \frac{120}{x}$ for $x \ge 0$.

(iv) Find the value of x for which gf(x) = 20.

[3]

[2]

[2]

(i)	3 < f < 7	B1,B1	If B0 then SC1 for $3 < f < 7$
(ii)	f(12) = 5	B1	f ² (x) $\sqrt{(\sqrt{(x-3)}+2-3)}+2$ earns B1
	$(f(5) =) 2 + \sqrt{2}$	B1	
(iii)	Clear indication of method $f^{-1}(x) = (x - 2)^2 + 3$	M1 A1	condone $y = (x - 2)^2 + 3$
(iv)	gf (x) = $\frac{120}{\sqrt{(x-3)}+2}$	B1	
	Attempt to solve <i>their</i> gf $(x) = 20$	M1	
	<i>x</i> = 19	A1	

14. $0606_w14_qp_21$ Q: 4

The functions f and g are defined for real values of x by

$$f(x) = \sqrt{x - 1} - 3 \qquad \text{for } x > 1,$$

$$g(x) = \frac{x - 2}{2x - 3} \qquad \text{for } x > 2.$$
[2]

(i) Find gf(37).

(ii) Find an expression for $f^{-1}(x)$.

(iii) Find an expression for $g^{-1}(x)$.

[2]

[2]

(i)	f(37)=3 or gf(x) = $\frac{\sqrt{x-1}-3-2}{2(\sqrt{x-1}-3)-3}$	B1	
	$gf(37) = \frac{3-2}{6-3} = \frac{1}{3}$	B1	
(ii)	$y = \sqrt{x-1} - 3 \rightarrow (y+3)^2 = x-1$ $(x+3)^2 + 1 = f^{-1}(x)$ oe isw	M1 A1	Rearrange and square in any order Interchange x and y and complete
(iii)	$y = \frac{x-2}{2x-3}$ $2xy-3y = x-2 \rightarrow 2xy-x = 3y-2$ $\frac{3x-2}{2x-1} = g^{-1}(x) \text{ oe}$	M1 A1	Multiply and collect like terms Interchange and complete Mark final answer

A one-one function f is defined by $f(x) = (x - 1)^2 - 5$ for $x \ge k$.

(i) State the least value that *k* can take. [1]

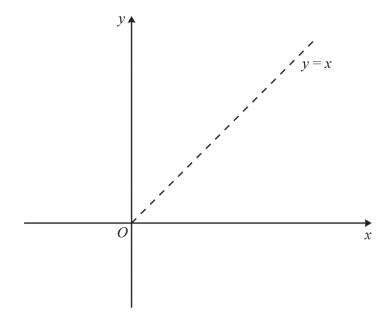
For this least value of k

(ii) write down the range of f, [1]

(iii) find $f^{-1}(x)$,

[2]

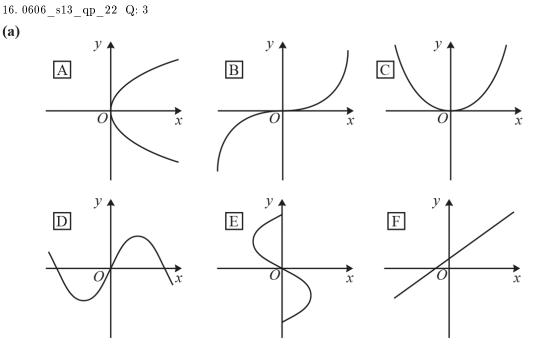
(iv) sketch and label, on the axes below, the graph of y = f(x) and of $y = f^{-1}(x)$, [2]



(v) find the value of x for which $f(x) = f^{-1}(x)$.

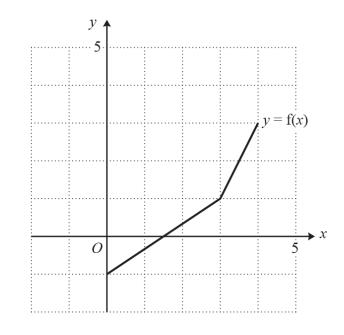
Answer:

(i)	1	B 1	Not a range for k, but condone $x = 1$ and $x \ge 1$
(ii)	$f \ge -5$	B 1	Not x , but condone y
(iii)	Method of inverse	M1	Do not reward poor algebra but allow slips
	$1+\sqrt{x+5}$	A1	Must be $f^{-1} = or y =$
(iv)	f: Positive quadratic curve correct range and domain	B 1	Must cross <i>x</i> -axis
	f^{-1} : Reflection of f in $y = x$	B 1√	\sqrt{their} f(x) sketch Condone slight inaccuracies unless clear contradiction.
(v)	Arrange $f(x) = x$ or $f^{-1}(x) = x$ to 3 term quadratic = 0	M1	
	4 only www	A1	Allow $x = 4$ with no working. Condone (4, 4). Do not allow final A mark if -1 also given in answer

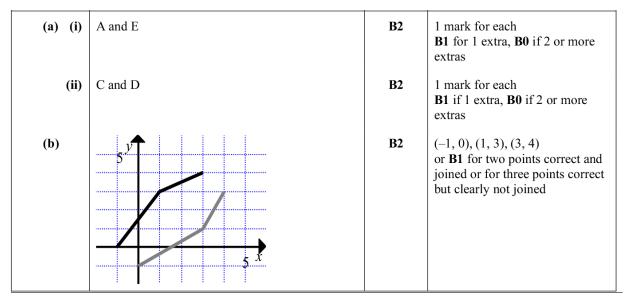


- (i) Write down the letter of each graph which does **not** represent a function. [2]
- (ii) Write down the letter of each graph which represents a function that does not have an inverse.

(b)



The diagram shows the graph of a function y = f(x). On the same axes sketch the graph of $y = f^{-1}(x)$. [2]



Chapter 2

Quadratic functions

$17.\ 0606_m22_qp_22 \ \ Q:\ 4$

Find the x-coordinates of the points of intersection of the curves $\frac{x^2}{4} + \frac{y^2}{9} = 1$ and $y = \frac{3}{2x}$. Give your answers correct to 3 decimal places. [5]

Question	Answer	Marks	Partial Marks
	Eliminates one unknown e.g. $\frac{x^2}{4} + \frac{1}{9}\left(\frac{3}{2x}\right)^2 = 1$	M1	
	Rearranges to solvable form e.g. $x^4 - 4x^2 + 1 = 0$	A1	
	Solves : $\frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(1)}}{2}$	M1	dep on attempt to eliminate one unknown and having a 3-term quadratic in x^2
	$x^2 = 2 \pm \sqrt{3}$ oe isw or 3.7320[5] and 0.2679[4]	A1	
	$x = \pm 1.932$ or $x = \pm 0.518$	A1	

18. $0606_s22_qp_22$ Q: 3

Find the possible values of k for which the equation $kx^2 + (k+5)x - 4 = 0$ has real roots. [5]

Question	Answer	Marks	Partial Marks
	Uses $b^2 - 4ac$ oe: $(k+5)^2 - 4k(-4)$ [* 0, where * could be = or any inequality sign]	M1	
	Forms a correct 3-term expression: $k^2 + 26k + 25$	A1	
	Factorises $k^{2} + 26k + 25$ or solves $k^{2} + 26k + 25 = 0$ oe	M1	dep on first M1 , FT <i>their</i> 3-term quadratic in <i>k</i>
	Correct critical values -1, -25 soi	A1	
	$k \leqslant -25, k \geqslant -1$	A1	mark final answer

Find the x-coordinates of the points where the line y = 3x - 8 cuts the curve $y = 2x^3 + 3x^2 - 26x + 22.$ [5]

EXAMINENT Eminent Exam Preparation Resources

Question	Answer	Marks	Guidance
	$2x^3 + 3x^2 - 29x + 30 [=0]$	B1	
	Uses a correct factor $x - 2$ or $x + 5$ to find a quadratic factor with at least 2 terms correct	M1	
	$(x-2) \rightarrow (2x^2 + 7x - 15) [=0]$ or $(x+5) \rightarrow (2x^2 - 7x + 6) [=0]$	A1	
	Factorises or solves <i>their</i> 3-term quadratic: (x + 5)(2x - 3) = 0 or $(x - 2)(2x - 3) = 0$ or $[x =]\frac{-7 \pm \sqrt{7^2 - 4(2)(-15)}}{2(2)}$ or $\frac{7 \pm \sqrt{(-7)^2 - 4(2)(6)}}{2(2)}$	M1	dep on previous M1
	x = 2, -5, 1.5	A1	

(a) Write $3x^2 + 15x - 20$ in the form $a(x+b)^2 + c$ where a, b and c are rational numbers. [4]

(b) State the minimum value of $3x^2 + 15x - 20$ and the value of x at which it occurs. [2]

(c) Use your answer to part (a) to solve the equation $3y^{\frac{2}{3}} + 15y^{\frac{1}{3}} - 20 = 0$, giving your answers correct to three significant figures. [3]

Question	Answer	Marks	Guidance
(a)	$3\left(x+\frac{5}{2}\right)^2-\frac{155}{4}$	B4	B2 for $3\left(x+\frac{5}{2}\right)$ or $3(x+2.5)^2$
			or B1 for $\left(x + \frac{5}{2}\right)^2$ or $(x + 2.5)^2$
			B2 for $c = -\frac{155}{4}$ or -38.75
			or B1 for $-\frac{25}{4} \times 3 - 20$ oe
(b)	Min value $-\frac{155}{4}$ when x is $-\frac{5}{2}$	B2	 FT <i>their c</i> from part a and <i>-their b</i> from (a) B1 for either without contradiction
Question	Answer	Marks	Guidance
(c)	$3\left(y^{\frac{1}{3}} + \frac{5}{2}\right)^2 = \frac{155}{4} \text{ soi}$	M1	FT an expression of correct form from (a)
	Rearranges as far as: $y^{\frac{1}{3}} = -\frac{5}{2} \pm \sqrt{\frac{155}{12}}$	A1	
	soi		
	y = 1.31 or -226	A1	

Find the values of the constant k for which the equation $kx^2 - 3(k+1)x + 25 = 0$ has equal roots. [4]

Answer:

Uses $b^2 - 4ac$ with at most one error in substitution: $(-3(k+1))^2 - 4(k)(25) * 0$	M1	
$9k^2 - 82k + 9*0$	A1	
Factorises or solves <i>their</i> 3-term quadratic	M1	
$k = \frac{1}{9}$ or 9; mark final answer	A1	

- 22. $0606_s21_qp_21$ Q: 1
- (a) Write the expression $x^2 6x + 1$ in the form $(x+a)^2 + b$, where a and b are constants. [2]

(b) Hence write down the coordinates of the minimum point on the curve $y = x^2 - 6x + 1$. [1]

Answer:

Question	Answer	Marks	Partial Marks
(a)	$(x-3)^2-8$		B1 for $(x - 3)^2 + k$ where $k \neq -8$ or $a = -3$ or $(x + m)^2 - 8$ where $m \neq -3$ or $b = -8$
(b)	(3, -8)	B1	strict FT <i>their a</i> and <i>b</i>

Find the exact values of the constant k for which the line y = 2x + 1 is a tangent to the curve $y = 4x^2 + kx + k - 2$. [6]

Question	Answer	Marks	Partial Marks
	$4x^2 + kx + k - 2 = 2x + 1$	M1	
	$4x^{2} + (k-2)x + k - 3[*0]$ soi	A1	* can be <, >, =, \leq , \geq
	$(k-2)^2 - 4(4)(k-3)$	M1	
	$k^2 - 20k + 52 * 0$	A1	
	$k = \frac{-(-20) \pm \sqrt{(-20)^2 - 4(1)(52)}}{2}$	M1	
	$k = 10 \pm \sqrt{48}$ oe isw	A1	
	Alternative (using calculus)	(M1)	
	2 = 8x + k oe		
	$y = 4x^{2} + (2 - 8x)x + 2 - 8x - 2$ or $y = -4x^{2} - 6x$	(M1)	
	$0 = 4x^2 + 8x + 1$	(A1)	
	$x = \frac{-8 \pm \sqrt{8^2 - 4(4)(1)}}{8}$	(M1)	
	$x = -1 \pm \frac{\sqrt{48}}{8} $ oe	(A1)	
	for $k = 10 \pm \sqrt{48}$ oe	(A1)	

58

EXAMINENT Eminent Exam Preparation Resources Find the values of the constant k for which $(2k-1)x^2 + 6x + k + 1 = 0$ has real roots. [5]

Uses $b^2 - 4ac$: $6^2 - 4(2k - 1)(k + 1)$	M1	
$-8k^2 - 4k + 40 * 0$ oe	M1	dep on first M1
		where * is = or any inequality sign condone one sign or arithmetic slip in simplification
Factorises or solves <i>their</i> 3-term quadratic expression or equation for CVs e.g. $(5+2k)(8-4k)$ oe	M1	
Finds correct CVs: -2.5 oe, 2	A1	
$-2.5 \leqslant k \leqslant 2$	A1	mark final answer

EXAMINENT Eminent Exam Preparation Resources Find the values of *m* for which the line y = mx - 2 does not touch or cut the curve $y = (m+1)x^2 + 8x + 1$.

[6]

Question	Answer	Marks	Partial Marks
6	$(m+1)x^2 + (8-m)x + 3 = 0_{\text{oe, soi}}$	B1	
	$(8-m)^2 - 4(m+1)(3)$	M1	
	$m^2 - 28m + 52$ [*0] oe	M1	dep on previous M1 ; condone one sign error where * is = or any inequality sign
	Factorises or solves <i>their</i> 3-term quadratic expression or equation for CVs	M1	dep on use of $b^2 - 4ac$
	Finds correct CVs: 2, 26	A1	
	2 <m<26< td=""><td>A1</td><td>Mark final answer</td></m<26<>	A1	Mark final answer

62

26.0606_m20_qp_22 Q: 7

Find the coordinates of the points of intersection of the curves $x^2 = 5y - 1$ and $y = x^2 - 2x + 1$. [5]

Eliminates one variable e.g. $x^2 = 5(x^2 - 2x + 1) - 1$ or $y = 5y - 1 - 2\sqrt{5y - 1} + 1$	M1	
Collects terms ready to solve e.g. $4x^2 - 10x + 4 = 0$ or $4y^2 - 5y + 1 = 0$	A1	
Factorises, applies the formula or completes the square e.g. $2(2x-1)(x-2)$ or $(4y-1)(y-1)$	M1	
Both (0.5, 0.25) and (2, 1)	A2	A1 for either $(0.5, 0.25)$ or $(2, 1)$ provided nfww or $x = 0.5, 2$ or $y = 0.25, 1$

27. 0606_s20_qp_21 Q: 2

(a) Write $9x^2 - 12x + 5$ in the form $p(x-q)^2 + r$, where p, q and r are constants. [3]

(b) Hence write down the coordinates of the minimum point of the curve $y = 9x^2 - 12x + 5$. [1]

64

(a)	$9\left(x-\frac{2}{3}\right)^2+1$ oe	B3	B1 for each of <i>p</i> , <i>q</i> , <i>r</i> correct in correctly formatted expression; allow correct equivalent values If B0 then SC2 for $9\left(x-\frac{2}{3}\right)+1$ or SC1 for correct values but other incorrect format
(b)	their $\left(\frac{2}{3}, 1\right)$ oe	B1	FT their (a)

$28.0606 s_{20}qp_{22}$ Q: 3

Find the values of k for which the line y = x-3 intersects the curve $y = k^2x^2 + 5kx + 1$ at two distinct points. [6]

$x-3=k^2x^2+5kx+1$	M1	
$k^2x^2 + (5k-1)x + 4 = 0$ soi	A1	
$(5k-1)^2 - 4(k^2)(4)$	M1	
$9k^2 - 10k + 1 * 0$	M1	
Critical values: $\frac{1}{9}$ and 1 soi	A1	
$k < \frac{1}{9} \text{ or } k > 1$	A1	

 $29.\ 0606_s20_qp_23 \ Q:\ 2$

Find the set of values of k for which $4x^2 - 4kx + 2k + 3 = 0$ has no real roots.

[5]

66

U (Uses $b^2 - 4ac$ $-4k)^2 - 4(4)(2k+3)$ soi	M1	
	Correctly simplifies $6k^2 - 32k - 48$	A1	FT provided of equivalent difficulty
1	6(k+1)(k-3) oe	M1	
С	CV –1, 3	A1	
-	-1 < <i>k</i> < 3	A1	FT <i>their</i> lower $CV < k < their$ upper CV

 $30.0606_w20_qp_{21}$ Q: 2

30. $0606_w20_qp_{21}$ Q: 2 Find the coordinates of the points of intersection of the curve $x^2 + xy = 9$ and the line $y = \frac{2}{3}x - 2$. [5]

$x^2 + x\left(\frac{2}{3}x - 2\right) = 9$	M1	Eliminate <i>y</i>
$5x^2 - 6x - 27 = 0$	A1	
(x-3)(5x+9)=0	M1	Factorise or formula
(3, 0)	A1	Or both x values
$\left(-\frac{9}{5},-\frac{16}{5}\right)$	A1	

31. $0606_w20_qp_23$ Q: 3

Find the values of k for which the equation $x^2 + (k+9)x + 9 = 0$ has two distinct real roots. [4]

Answer:

$(k+9)^2 - 4 \times 9 \ (>0)$	M1	use $b^2 - 4ac$
$k^2 + 18k + 45 (>0)$	A1	
k = -15 $k = -3$	A1	
k < -15 or $k > -3$ no isw mark final answer	A1	not 'and' A0 if combined as one statement

EXAMINENT Eminent Exam Preparation Resources (a) Find the values of x for which $(2x+1)^2 \leq 3x+4$.

(b) Show that, whatever the value of k, the equation $\frac{x^2}{4} + kx + k^2 + 1 = 0$ has no real roots. [3]

[3]

70

4(a)	Expands, rearranges to form a 3-term quadratic on one side $4x^2 + x - 3[*0]$	M1	
	Critical values $\frac{3}{4}$ and -1	A1	
	$-1 \leqslant x \leqslant \frac{3}{4}$ final answer	A1	FT their critical values
4(b)	$k^2 - 4\left(\frac{1}{4}\right)\left(k^2 + 1\right)$	M1	
	-1	A1	
	discriminant independent of k and negative oe	A1	FT <i>their</i> –1

33. 0606_s19_qp_21 Q: 1

Find the values of x for which $x(6x + 7) \ge 20$.

[3]

Answer:

$6x^2 + 7x - 20[*0]$	M1	where * may be any inequality sign or =
Critical values $\frac{4}{3}$, $-\frac{5}{2}$	A1	
$x \le -\frac{5}{2}$ or $x \ge \frac{4}{3}$ final answer	A1	FT <i>their</i> critical values using outside regions

E EXAMINENT Eminent Exam Preparation Resources Find the values of k for which the equation $(k-1)x^2 + kx - k = 0$ has real and distinct roots. [4]

Answer:

$k^2 - 4(k-1)(-k)$ oe	B1	
k(5k – 4)	M1	
Correct critical values 0, 0.8 oe	A1	
k < 0, k > 0.8 oe	A1	FT <i>their</i> critical values provided <i>their</i> $ak^2 + bk + c > 0$ has positive <i>a</i> and there are 2 values; mark final answer If B1 M0 allow SC1 for a final answer of $k > 0.8$ oe

72

(i) Express $5x^2 - 15x + 1$ in the form $p(x+q)^2 + r$, where p, q and r are constants. [3]

(ii) Hence state the least value of $x^2 - 3x + 0.2$ and the value of x at which this occurs. [2]

(i)	$5(x-1.5)^2 - 10.25$ isw	B3	B1 for each of p , q , r correct in correctly formatted expression; allow correct equivalent values
			If B0 then SC2 for $5(x-1.5)-10.25$ or SC1 for correct values but other incorrect format
(ii)	$\frac{their - 10.25}{5}$ is least value when	B2	STRICT FT their part (i);
	5 $x = their 1.5$		B1 STRICT FT for each

36. $0606_w19_qp_22$ Q: 4

Find the values of k for which the line y = kx + 3 does not meet the curve $y = x^2 + 5x + 12$. [5]

$kx + 3 = x^{2} + 5x + 12$ $\rightarrow x^{2} + (5 - k)x + 9 (= 0)$	M1	Equate and attempt to simplify to all terms on one side.
Use discriminant of <i>their</i> quadratic	. M1	dep
$(5-k)^2 - 36$ oe	A1	Unsimplified
k = -1 and 11	A1	Both boundary values
-1 < k < 11	A1	Must be in terms of k .
OR		
$2x + 5 \sim k$	M1	Connect gradients of line and curve
$y = (2x+5)x+3 \rightarrow$	M1	Eliminate k and y .
$2x^2 + 5x + 3 = x^2 + 5x + 12$		
$x^2 = 9 \rightarrow x = \pm 3$	A1	
k = 11 or k = -1	A1	
-1 < k < 11	A1	

Do not use a calculator in this question.

Solve the quadratic equation $(\sqrt{5}-3)x^2+3x+(\sqrt{5}+3)=0$, giving your answers in the form $a+b\sqrt{5}$, where a and b are constants. [6]

Answer:

$\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)=-4$	B1	Seen anywhere
Attempt formula	M1	
$x = \frac{-3 \pm 5}{2\left(\sqrt{5} - 3\right)}$	A1	
Multiply by <i>their</i> $(\sqrt{5}+3)$	M1	Attempt must be seen with a further line of working. oe
$x = \sqrt{5} + 3$	A1	oe Mark final answer
$x = \frac{-1\left(\sqrt{5} + 3\right)}{4}$	A1	oe Mark final answer