TOPICAL PAST PAPERS

Edexcel IGCSE Chemistry (4CH1)

[Paper 2C]

Exam Series: January 2017 - June 2024

Format Type A:
Answers to all questions are provided as an appendix

Introduction

Each Topical Past Paper Questions Compilation contains a comprehensive collection of hundreds of questions and corresponding answer schemes, presented in worksheet format. The questions are carefully arranged according to their respective chapters and topics, which align with the latest Edexcel IGCSE or AS/A Level subject content. Here are the key features of these resources:

- 1. The workbook covers a wide range of topics, which are organized according to the latest syllabus content for Edexcel IGCSE or A Level exams.
- 2. Each topic includes numerous questions, allowing students to practice and reinforce their understanding of key concepts and skills.
- 3. The questions are accompanied by detailed answer schemes, which provide clear explanations and guidance for students to improve their performance.
- 4. The workbook's format is user-friendly, with worksheets that are easy to read and navigate.
- 5. This workbook is an ideal resource for students who want to familiarize themselves with the types of questions that may appear in their exams and to develop their problem-solving and analytical skills.

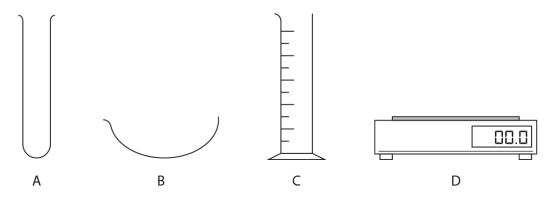
Overall, Topical Past Paper Questions Workbooks are a valuable tool for students preparing for Edexcel IGCSE or A level exams, providing them with the opportunity to practice and refine their knowledge and skills in a structured and comprehensive manner. To provide a clearer description of this book's specifications, here are some key details:

- Title: Edexcel International GCSE Chemistry (4CH1) Paper 2C Topical Past Papers
- Subtitle: Exam Practice Worksheets With Answer Scheme
- Examination board: Pearson Edexcel
- Subject code: 4CH1
- Years covered: January 2017 June 2024
- Paper: 2C
- Number of pages: 690
- Number of questions: 189

Contents

1	Ass 1.1	essing Investigative / Experimental Skills Assessing Investigative / Experimental Skills	7 7
2		nciples of chemistry	11
_	2.1	States of matter	11
	2.2	Elements, compounds and mixtures	16
	2.3	Atomic structure	
	2.4	The Periodic Table	$\frac{28}{28}$
	2.5	Chemical formulae, equations and calculations	42
	2.6	Ionic bonding	
	$\frac{2.5}{2.7}$	Covalent bonding	56
	2.8	Metallic bonding	
	2.9	Electrolysis	
	2.0		00
3	Ino	rganic chemistry	7 5
	3.1	Group 7 (halogens) – chlorine, bromine and iodine	75
	3.2	Gases in the atmosphere	80
	3.3	Reactivity series	85
	3.4	Extraction and uses of metals	93
	3.5	Acids, alkalis and titrations	105
	3.6	Acids, bases and salt preparations	131
	3.7	Chemical tests	188
4	Phy	vsical chemistry	235
	4.1	Energetics	235
	4.2	Rates of reaction	
	4.3	Reversible reactions and equilibria	
		•	
5	\mathbf{Org}	,	299
	5.1	Crude oil	299
	5.2	Alkanes	329
	5.3	Alkenes	336
	5.4	Alcohols	341
	5.5	Carboxylic acids	358
	5.6	Esters	365
	5.7	Synthetic polymers	398
A	Ans	swers	421

6 CONTENTS



Chapter 1

Assessing Investigative / Experimental Skills

1.1 Assessing Investigative / Experimental Skills

The diagram shows some pieces of apparatus.

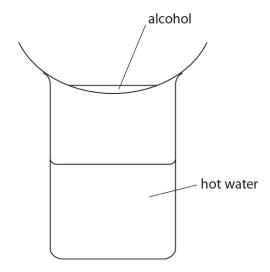
(a) Complete the table by giving the name of each piece of apparatus.

(4)

Letter	Name
А	
В	
С	
D	

(b) Which piece of apparatus can be used to measure the volume of a liquid?

(1)


- ⊠ A
- ⊠ B
- \times C
- ⊠ D

(Total for Question 1 = 5 marks)

 $2.\ 4CH1_2C_que_20190613\ Q:\ 3$

Methanol, ethanol, propanol and butanol are alcohols. They are all liquids that evaporate easily when warmed.

A student uses this apparatus to compare the time taken for the four liquids to evaporate.

She uses this method.

- pour some methanol into an evaporating basin
- place the evaporating basin on top of a beaker containing hot water
- measure the time taken for the methanol to evaporate completely
- repeat the experiment with each of the other alcohols, using the same apparatus
- (a) State two variables the student should control to make sure her results are valid.

1	
2	
(b) State why it is not safe to heat the evaporating basin directly with a Bu	
	(1)

(2)

WWW.EXAMINENT.COM

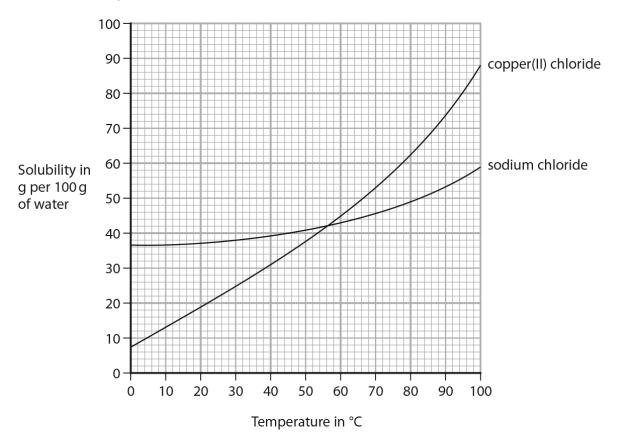
(c) The table shows the results of experiments done by four students, A, B, C and D.

	Formula	1	Γime taken	for liquid to	o evaporate in s		
Alcohol	of alcohol	Student A	Student B	Student C	Student D	Mean time in s	
methanol	CH₃OH	20	24	22	26	23	
ethanol	C₂H₅OH	32	34	35	30	33	
propanol	C₃H ₇ OH	45	47	50	48	48	
butanol	C₄H ₉ OH	64	63	90	60		

(i)	Calculate the mean (average) time for butanol to evaporate.	
		(2)

mean time =	S
(ii) Explain how the results show which alcohol evaporates most easily.	(2)
(iii) State the relationship between the number of carbon atoms in the molecule and how easily the alcohol evaporates.	(2)
(Total for Question 3 = 9 m	

Chapter 2


Principles of chemistry

2.1 States of matter

 $3.\ 4CH1_2C_que_20220118\ Q:\ 3$

This question is about solubility.

(a) The graph shows the solubilities of copper(II) chloride and sodium chloride at different temperatures.

(i) Determine the temperature at which copper(II) chloride and sodium chloride have the same solubility.

Show on the graph how you obtained your answer.

(2)

(ii) A saturated solution of copper(II) chloride in 100 g of water is cooled from $40\,^{\circ}\text{C}$ to $10\,^{\circ}\text{C}$.

Determine the mass, in grams, of copper(II) chloride that crystallises.

(2)

mass of copper(II) chloride =g

2.1. STATES OF MATTER

- 13
- (b) A student uses this method to determine the solubility of potassium chloride in water at room temperature.
 - record the mass of an empty evaporating basin
 - pour some saturated potassium chloride solution into the evaporating basin
 - record the mass of the evaporating basin and saturated potassium chloride solution
 - heat the evaporating basin to remove all the water
 - record the mass of the evaporating basin and the dry potassium chloride

The table shows the student's results.

	Mass in grams
evaporating basin	58.1
evaporating basin and saturated potassium chloride solution	78.2
evaporating basin and dry potassium chloride	63.2

(i)	Calculate	the mass	of	dry	potassium	chloride	ohtained
(1)	Calculate	tile illass	OI	ury	potassium	chilonae	obtained.

(1)

mass =		g
--------	--	---

(ii) Calculate the mass of water removed.

(1)

mass =		

MOO THEN IN A WWW	
WWW EXAMINENT	
WWW EXAMINENT	
WWW EXAMINENT OF	
WWW EXAMINENT OF	-
WWW EVAMINENT	L
WWW EVAMINENT	
WWW EVAMINENT	1
WWW EXAMINEN	•
WWW EXAMINEN	
WWW EXAMINEN	
WWW EXAMINEN	н
WWW EXAMINER	
WWW EYAMINE	=
WWW EYAMINI	
WWW EYAMINI	
WWW EYAMIN	ш
WWW EYAMIN	
WWW EYAMIN	-
WWW EVAM	_
A/ \A/ \A/ E \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
WWW EVAN	-
WWW EYA	-
WWW EYA	13
W.W.W E Y	~
W.W.W E Y	
W.W.W E Y	<
W.W.W E	
W W W E	>
///////////////////////////////////////	-
///////////////////////////////////////	
A/ \A/ \A	_
A/ \A/ \A	
× ×	_
× ×	2
× ×	-
~	
3	-
>	<
~	
	-
_	ė
ŕ	2
	_

	(Total for Ouestion	3 = 9 marks)
(iv) Suggest why the student's method solubility of hydrated copper(II) su		(1)
	solubility =	g per 100 g of water
(iii) Calculate the solubility of potassiu	um chloride in grams per 100 grams	of water. (2)

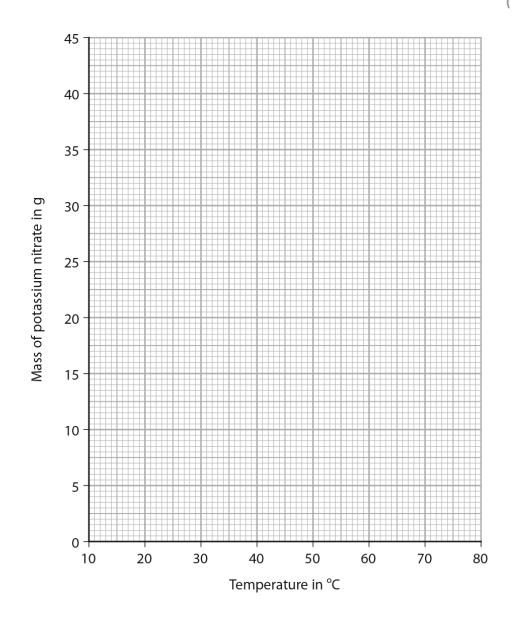
$4.\ 4{\rm CH1}_2{\rm C}_{\rm que}_20210429\ {\rm Q:}\ 4$

A student investigates the solubility of potassium nitrate in water. She measures the masses of potassium nitrate that dissolve in 25 cm³ of water at different temperatures.

The table shows the student's results. One of the results is anomalous.

Temperature in °C	10	20	30	40	50	60	70
Mass of potassium nitrate in g	8.0	10.0	12.5	16.0	17.5	26.5	34.0

(a) (i) Plot the results on the grid.


(1)

(ii) Draw a circle around the anomalous result.

(1)

(iii) Ignoring the anomalous result, draw a curve of best fit.

(1)

(Total for Question 4 = 9 marks)

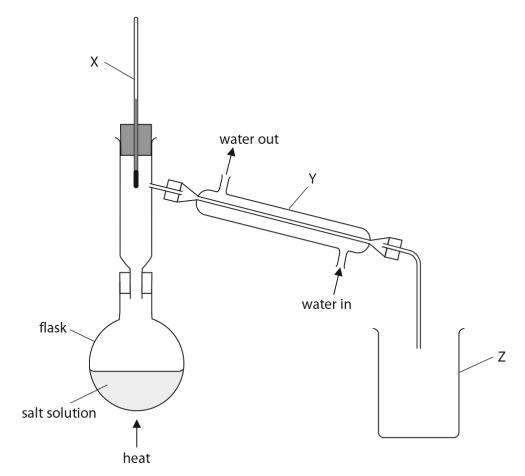
٦	↸	
4	_	
-	-	
ľ	_	
ι		
1	_	
L		
1		
2	7	
4	-	
ı.	ı	
Ξ		
4	-	
-	-	
•	-	
	>	
•	_	
<	1	
	-	
2	×	
ì		
۰	۰	
-	5	
4	5	
1	1	
٥	>	
S	5	
ζ		
	>	
	ς	

	(b) Suggest two possible mistakes	that could have caused the anomalou	us result.
1			
2			
	(c) Use your graph to find the max 25 cm ³ of water at 75 °C.	kimum mass of potassium nitrate that	dissolves in
	Show on your graph how you	obtained your answer.	(2)
		r	mass = g
	(d) Use your graph to calculate the water at 25 °C.	e solubility of potassium nitrate in g pe	er 100 g of
	[1.0 cm ³ of water has a mass of	1.0 g]	(2)

2.2 Elements, compounds and mixtures

(1)

 $5.~4{\rm CH1}_2{\rm C}_{\rm que}_20201121~~{\rm Q:}~1$


A student is given a mixture of salt solution and sand.

She wants to obtain pure water from the mixture.

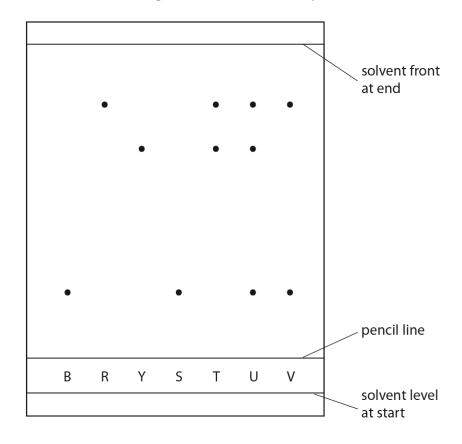
(a) She separates the sand from the salt solution.

Which method of separation should she use?

- A crystallisation
- B filtration
- C fractional distillation
- **D** simple distillation
- (b) The student then uses this apparatus to obtain pure water from the salt solution.

-
C
Ū
`
_
٠.
4
Ц
7
-
4
>
ы
-
<
-
<
-
<
>

	(i)	Name the pieces of apparatus labelled X, Y and Z.	
			(3)
V			
X			
Υ			
Z			
	(ii)	State what remains in the flask when the separation is complete.	
			(1)
		(Total for Question 1 = 5 m.	arks)


 $6.\ 4{\rm CH1}_2{\rm C}_{\rm que}_20201121\ {\rm Q:}\ 2$

In a chromatography experiment a student uses samples of three pure food dyes, blue (B), red (R) and yellow (Y).

He also uses samples of four unknown substances, S, T, U and V.

The student puts a small drop of each substance on the pencil line.

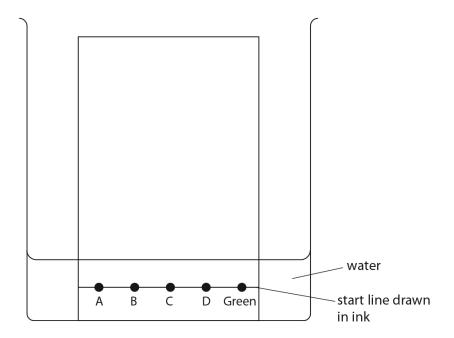
The diagram shows the student's chromatogram at the end of the experiment.

(a) Which of the unknown substances contains only one food dye?

(1)

- A substance S
- B substance T
- Substance V

(b) Explain which pure food dyes are in substance V.	(2)
(c) (i) Calculate the R _f value of the yellow food dye Y.	(3)
$R_f = \dots$	
(ii) State how the chromatogram suggests that the yellow food dye Y is less so in the solvent than the red food dye R.	oluble
	(1)
(Total for Question 2 = 7	' marks)


7. $4CH1_2CR_que_20200305$ Q: 2

Chromatography is used to analyse mixtures.

A student does a chromatography experiment to analyse the composition of green food colouring in sweets.

She places four known dyes, A, B, C and D, and the green food colouring on chromatography paper.

The diagram shows the student's apparatus at the start of her experiment.

(a) The diagram shows that the student makes two mistakes when setting up her apparatus.

State the two changes that the student should make so that her experiment works.

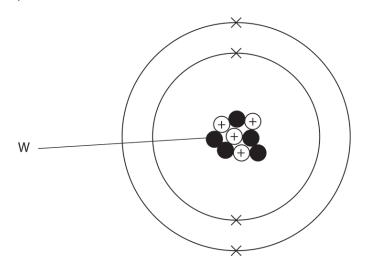
1	 											
า												
_	 											

(2)

(b) Another student does the chromatography experiment correctly.

The diagram shows her chromatogram at the end of the experiment.

(i) Explain what the chromatogram shows about the composition of the green food colouring.


(3	;)

	(Total for Question 2 = 9 r	narks)
(iii) Suggest why dye A does not move.		(1)
	R _f value =	
		(3)
Calculate the R_f value of dye C.		(3)
(ii) The distance between the start line and the s	spot for dye C is 0.2 cm.	

2.3 Atomic structure

8. 4ch1-2cr-que-20240612~~Q:~2

(a) The diagram represents an atom of an element.

(i) What is the name of the particle labelled W?

(1)

- A electron
- B ion
- C neutron
- □ proton
- (ii) What is the mass number of this atom?

(1)

- B 5

(b) Th	ese are the symbols for the two isc	otopes c	f lithium.		
		⁶ 3Li	⁷ ₃Li		
(i)	In terms of sub-atomic particles, between the two isotopes.	give one	e similarity and o	ne difference	(2)
	difference				
(ii)	A sample of lithium contains 7.59	% of ⁶ Li a	and 92.5% of ⁷ 3Li		
	Calculate the relative atomic mas	ss (A _r) of	this sample of lit	hium.	(2)
			(Total fo	A _r =r Question 2 = 6 m	
			(1014110	i Question z = 6 m	ai n 5)

Appendix A

Answers

WWW.EXAMINENT.COM

1. 4CH1_2CR_rms_20201121 Q: 1

Question number	Answer	Notes	Marks
(a)	M1 A test tube / boiling tube		4
	M2 B evaporating basin	ALLOW evaporating dish/crystallising dish	Grad
	M3 C measuring cylinder	along the state of	
	M4 D (top-pan) balance	ALLOW (weighing) scale(s)	
		ALLOW weighing machine	
(b)	С		Comp
	A is incorrect as a test tube cannot measure a volume of liquid		
	B is incorrect as an evaporating basin cannot measure a volume of liquid		
	D is incorrect as a balance measures mass not volume		
			Total 5

compiled by examinent.com	

$2.\ 4{\rm CH1}_2{\rm C}_{\rm rms}_20190613\ {\rm Q:}\ 3$

Question number	Answer	Additional guidance	Marks
(a)	M1 the volume of liquid/alcohol	ALLOW amount of liquid/alcohol IGNORE mass IGNORE volume of water	2
	M2 the temperature of the water	ALLOW temperature of surroundings	
		IGNORE references to temperature of the alcohol	
(b)	alcohols/the liquids are flammable/catch fire easily	ALLOW alcohols/the liquids can be easily ignited	1
		ALLOW any named alcohol from the table	
(c) (i)	M1 (64 + 63 + 60) ÷3		2
	M2 = 62	ALLOW 62.3	
		62/62.3 with no working scores 2	
		ALLOW 69/69.25/69.3 for 1 mark	
(ii)	An explanation including the following two points:		
	M1 methanol/CH ₃ OH (evaporates most easily)		2
	M2 because the time taken is the shortest	ACCEPT because has lowest (mean) time	

Question Number	Answer	Additional Guidance	Marks
(iii)	M1 as the number of carbon atoms increases M2 the ease of evaporation decreases/the less easily the alcohol evaporates	ALLOW the less volatile the alcohol IGNORE the slower the alcohol evaporates IGNORE references to time taken ALLOW correct reverse argument	2
		Total	9

compiled by examinent com	

WWW.EXAMINENT.COM

 $3.\ 4{\rm CH1}_2{\rm C}_{\rm rms}_20220118\ {\rm Q:\ }3$

Question number	Answer	Notes	Marks
(a) (i)	M1 working shown on graph		2
	M2 56 (°C)	ALLOW any value between 56 and 57 inclusive.	
(ii)	M1 31-13		2
	M2 18 (g)	ALLOW ecf if one incorrect reading in M1	
		correct answer of 18g with or without working scores 2	
(b) (i)	5.1 (g)		1
(ii)	15 (g)		1
(iii)	M1 5.1÷15 OR 0.34 (g) OR answer to (i) ÷ answer to (ii)		2
	M2 34 (g) OR answer to M1 × 100		
		correct answer of 34 (g) with or without working scores 2	
(iv)	Any one from		1
	M1 (hydrated) copper(II) sulfate would become anhydrous copper sulfate	ALLOW the (hydrated) crystals would decompose	

compiled by examinent.com	

$4.\ 4{\rm CH1}_2{\rm C}_{\rm rms}_20210429\ {\rm Q:}\ 4$

Question number	Answer	Notes	Marks
(a) (i)	all points plotted correctly to the nearest grid line		1
(ii)	point at 50°C and 17.5 g circled on grid/in table	ALLOW ECF from incorrect plotting	1
(iii)	smooth curve of best fit		1
(b)	Any two from		2
(b)	M1 less than 25 cm³ of water was used M2 the temperature was less than 50 °C M3 not enough potassium nitrate was added M4 the solution was not stirred	ALLOW ECF from incorrect plotting and incorrect point circled for M1 and M2 only	2

Question number	Answer	Notes	Marks
(c)	M1 curve extended to 75 °C		2
	M2 correct mass read from graph to the nearest grid line	expected answer around 39 to 40 g	
		0 marks if curve not extended	
(d)	M1 mass at 25 °C read from graph to nearest grid line		2
	M2 mass from graph multiplied by 4	expected answer around 44 g	
		ALLOW ECF from incorrect plotting	
			Total 9

_____ compiled by examinent.com

WWW.EXAMINENT.COM

 $5.~4{\rm CH1}_2{\rm C}_{\rm rms}_20201121~~{\rm Q};~1$

Question number	Answer	Notes	Marks
(a)	B filtration is the correct answer because it will enable sand to be separated from salt solution		1 comp
	A is not correct because crystallisation will not enable sand to be separated from salt solution		
	C is not correct because fractional distillation will not enable sand to be separated from salt solution		
	D is not correct because simple distillation will not enable sand to be separated from salt solution		
(b)	(i) X is a thermometer		3 cler
	Y is a (Liebig) condenser		cier
	Z is a beaker		
	(ii) salt		1 cler

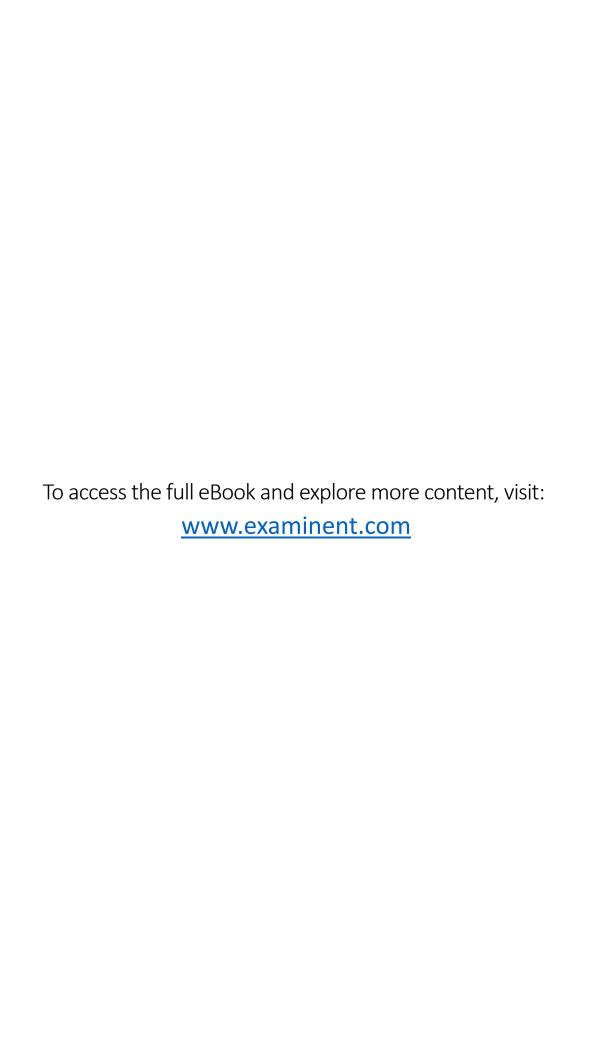
	Total for Q1	= 5
compiled by examinent.com		

$6.\ 4{\rm CH1}_2{\rm C}_{\rm rms}_20201121\ {\rm Q:}\ 2$

Question number	Answer	Notes	Marks
(a)	A substance S is the correct answer because S only contains one dye as it produces only one spot		1 comp
	B is not correct because T does not only contain one dye as it produces two spots		
	C is not correct because U does not only contain one dye as it produces three spots		
	D is not correct because V does not only contain one dye as it produces two spots		
(b)	explanation containing following points		2 grad
	M1 (V contains) blue/B and red/R (dyes)		5.44
	M2 because V has spots at same height as those from blue/B and red/R OWTTE		
(c) (i)	M1 correct measurement of distance moved by spot Y	ALLOW 5.7-6.1	3
	M2 correct measurement of distance moved by solvent	ALLOW 8.7-9.1	ехр
	M3 use and evaluation of		
	R _f = <u>distance moved by spot Y</u> distance moved by solvent	ALLOW 1-4 sig fig ALLOW ECF from M1 M2 only if $R_f < 1$	
(ii)	spot from yellow food dye/Y does not move as far as spot from red food dye/R OWTTE	ORA	1 exp
	1	Total for Q2	= 7

	Total for Q2 =
 compiled by examinent.com	

WWW.EXAMINENT.COM


Question number	Answer	Notes	Marks
(a)	M1 level of the water must be below the dyes/start line	ACCEPT dyes/start line should be above water level	2
	M2 the start line must be drawn in pencil		
(b) (i)	2 marks for any two conclusions from		3
	(the green food colouring)		
	M1 contains (dye) B and (dye) D		
	M2 contains an unknown dye		
	M3 does not contain A or C		
	M4 contains three dyes	ALLOW is not pure	
	and 1 mark for a correct explanation of given conclusion for the green food colouring		
	eg (explanation for M1) because has spots at same level (as B and D)		
	eg (explanation for M2) because has a spot at different level (from A B C D)		
	eg (explanation for M3) because has no spots at same level (as A and C)		
	eg (explanation for M4) because has three spots		
(ii)	M1 (distance moved by solvent correctly measured) = 9.5 (cm)	ALLOW a tolerance of ±2mm	3
	M2 use of		
	R _f = <u>distance moved by the dye C</u> distance moved by the solvent	eg <u>6.2</u> 9.5 ALLOW ECF from M1	
	M3 evaluation of R _f	eg (6.2) = 0.65(3) (9.5)	
		ALLOW 1-4 sig fig ALLOW ECF from M2	
(iii)	(dye A) is not soluble in water	ALLOW solvent for water	1

compiled by examinent.com

8. 4ch1-2cr-rms-20240612 Q: 2

Question number	Answer	Notes	Marks
(a) (i)	C (neutron) A is not the correct answer because electrons are not in the nucleus B is not the correct answer as ions are not in the nucleus D is not the correct answer as protons have a positive charge		1
(ii)	C (9) A is not the correct answer because the proton number = 4 B is not the correct answer as there are 5 neutrons D is not the correct answer because 13 is the number of protons + neutrons + electrons		1
(b) (i)	similarity = number of protons/proton number difference = number of neutrons	ALLOW number of electrons ALLOW one has 3 neutrons and the other has 4 neutrons IGNORE reference to atomic number and mass numbers	2
(ii)	M1 ((7.5 × 6) + (92.5 × 7)) ÷ 100 M2 6.925/6.93/6.9	ALLOW 2 or more significant figures Answer 6.925/6.93/6.9 without working scores 2 marks Answer of 7 with correct method scores M1 Answer of 7 without working scores 0	2
		Total marks for qu	estion 2 = 6

compiled by exam	inent.com	

