Contents

1	Algebra	3
2	Logarithmic and exponential functions	59
3	Trigonometry	95
4	Differentiation	141
5	Integration	203
6	Numerical solution of equations	297
7	Vectors	353
8	Differential equations	413
9	Complex numbers	471
Δ	Answers	531

WWW.EXAMINENCE.COM

2 CONTENTS

Chapter 1

Algebra

1. 9709	_s20_qp_31 Q: 2
(a)	Expand $(2-3x)^{-2}$ in ascending powers of x , up to and including the term in x^2 , simplifying the coefficients. [4]
(b)	State the set of values of x for which the expansion is valid. [1]

			<i>x</i> 1 5 <i>x</i> 0	is divided by $2x^2$	- x + 1.	
		•••••	•••••			•••••
•••••	•••••	•••••••••••				•••••
		••••••	•••••			•••••
		•••••	•••••	•••••		•••••
•••••••••	•••••				••••••	•••••
	•••••	•••••	•••••			•••••
	•••••	••••••	•••••			•••••
						•••••
	•••••					

3. 9709	$_{\rm s20_qp_33~Q:~1}$
So	Ive the inequality $ 2x-1 > 3 x+2 $. [4]
••••	
••••	
••••	
••••	
••••	
••••	
••••	

sorve the the	equality $2 - 5x >$	2 x-3 .			
		•••••			
••••••		•••••		•••••	
				•••••	
••••••		•••••	••••••		
•••••••			•••••		
•••••••		•••••	•••••		
•			•••••		
	•••••				
••••••		•••••	•••••		
			••••••	•••••	
		•••••			

5. 9709_w20_qp_31 Q: 9

			•••		••••	•••	
					••••	•••	
			•••		••••	•••	
巨X Emine	A № ence i	1 N n exam	n pre	N (epar	□ [atio	三 on	

Let	$f(x) = \frac{8 + 5x + 12x^2}{(1 - x)(2 + 3x)^2}.$
(a)	Express $f(x)$ in partial fractions. [5]

	Hence obtain the expansion of $f(x)$ in ascending powers of x , up to and including the term i
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	

(a)	Expand $\sqrt[3]{1+6x}$ in ascending powers of x , up to and including the term in x^3 , simplifying coefficients.
b)	State the set of values of x for which the expansion is valid.

0709_m19_qp_32 Q: 8	
Let $f(x) = \frac{12 + 12x - 4x^2}{(2+x)(3-2x)}$.	
(i) Express $f(x)$ in partial fractions.	[5]
	,

щ
◁
×

Henc	e oota	in the	схран	SIOII O	1 1(<i>x</i>)	III asc	ændn	ig po	weis '	οι λ,	up to	and n	iciud	ing tii	e tem	[]
•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••		•••••		•••••	•••••	•••••		
•••••				•••••	•••••	•••••	•••••	•••••		•••••	••••••	•••••	•••••	•••••		•••••
•••••				•••••	••••••	•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••		•••••
		•••••														
								•••••								
			• • • • • • • • • • • • • • • • • • • •					•••••								
			•••••					•••••								
•••••			•••••	•••••		•••••	•••••	•••••		•••••		•••••				•••••
•••••		•••••		•••••			•••••	•••••		•••••						
•••••	••••••	•••••	•••••	•••••		•••••	•••••	•••••		•••••		•••••				
		•••••														
•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••	••••••			•••••
							•••••	•••••				•••••				
•••••								•••••				•••••				
•••••																

Let $f(x) = \frac{16 - 17x}{(2 + x)(3 - x)^2}$.
(i) Express $f(x)$ in partial fractions. [5]

8. 9709_s19_qp_31 Q: 8

Appendix A

Answers

1. 9709_s20_MS_31 Q: 2

(a)	State a correct unsimplified version of the x or x^2 term of the expansion of $(2-3x)^{-2}$ or $\left(1-\frac{3}{2}x\right)^{-2}$			
	State correct first term $\frac{1}{4}$	B1		
	Obtain the next two terms $\frac{3}{4}x + \frac{27}{16}x^2$	A1 + A1		
		4		
(b)	State answer $ x < \frac{2}{3}$, or equivalent	B1		
		1		

 $2.\ 9709_s20_MS_32\ Q:\ 1$

	Commence division and reach partial quotient $3x^2 + kx$	M1
	Obtain quotient $3x^2 + 2x - 1$	A1
	Obtain remainder $2x-5$	A1
		4

 $3.\ 9709_s20_MS_33\ Q{:}\ 1$

State or imply non-modular inequality $(2x-1)^2 > 3^2(x+2)^2$, or corresponding quadratic equation, or pair of linear equations	
Make reasonable attempt at solving a 3-term quadratic, or solve two linear equations for x	
Obtain critical values $x = -7$ and $x = -1$	
State final answer $-7 \le x \le -1$	
Alternative method for question 1	
Obtain critical value $x = -1$ from a graphical method, or by solving a linear equation or linear inequality	
Obtain critical value $x = -7$ similarly	
State final answer $-7 \le x \le -1$ [Do not condone \le for \le in the final answer.]	

 $4.\ 9709_w20_MS_31\ Q\!\!: 1$

Answer	Mark	Partial Marks
Make a recognisable sketch graph of $y = 2 x-3 $ and the line $y = 2 - 5x$	В1	Need to see correct V at $x = 3$, roughly symmetrical, $x = 3$ stated, domain at least $(-2, 5)$.
Find x-coordinate of intersection with $y = 2 - 5x$	M1	Find point of intersection with $y = 2 x - 3 $ or solve $2 - 5x$ with $2(x - 3)$ or $-2(x - 3)$
Obtain $x = -\frac{4}{3}$	A1	
State final answer $x < -\frac{4}{3}$	A1	Do not accept $x < -1.33$ [Do not condone \leq for \leq in the final answer.]
Alternative method for question 1		
State or imply non-modular inequality/equality $(2-5x)^2 >$, \geqslant , $=$, $2^2(x-3)^2$, or corresponding quadratic equation, or pair of linear equations $(2-5x) >$, \geqslant , $=$, \pm $2(x-3)$	В1	Two correct linear equations only
Make reasonable attempt at solving a 3-term quadratic, or solve one linear equation, or linear inequality for \boldsymbol{x}	M1	$21x^2 + 4x - 32 = (3x + 4)(7x - 8) = 0$ 2 - 5x or -(2 - 5x) with 2(x - 3) or -2(x - 3)
Obtain critical value $x = -\frac{4}{3}$	A1	
State final answer $x < -\frac{4}{3}$	A1	Do not accept $x < -1.33$ [Do not condone \leq for \leq in the final answer.]
	4	

$5.\ 9709_w20_MS_31\ Q:\ 9$

	Answer	Mark	Partial Marks
(a)	State or imply the form $\frac{A}{1-x} + \frac{B}{2+3x} + \frac{C}{(2+3x)^2}$	В1	
	Use a correct method for finding a coefficient	M1	
	Obtain one of $A = 1$, $B = -1$, $C = 6$	A1	
	Obtain a second value	A1	
	Obtain the third value	A1	In the form $\frac{A}{1-x} + \frac{Dx + E}{(2+3x)^2}$, where $A = 1$, $D = -3$
			and $E = 4$ can score B1 M1 A1 A1 A1 as above.
		5	
(b)	Use a correct method to find the first two terms of the expansion of $(1-x)^{-1}$, $(2+3x)^{-1}$, $\left(1+\frac{3}{2}x\right)^{-1}$, $\left(2+3x\right)^{-2}$ or $\left(1+\frac{3}{2}x\right)^{-2}$	M1	Symbolic coefficients are not sufficient for the M1 $A \left[\frac{1 + (-1)(-x) + (-1)(-2)(-x)^2}{2 \dots} \right] A = 1$ $\frac{B}{2} \left[\frac{1 + (-1)\left(\frac{3x}{2}\right) + (-1)(-2)\left(\frac{3x}{2}\right)^2}{2 \dots} \right] B = 1$ $\frac{C}{4} \left[\frac{1 + (-2)\left(\frac{3x}{2}\right) + (-2)(-3)\left(\frac{3x}{2}\right)^2}{2 \dots} \right] C = 6$
	Obtain correct un-simplified expansions up to the term in of each partial fraction	A1 FT +	$(1+x+x^2) + \left(-\frac{1}{2} + \left(\frac{3}{4}\right)x - \left(\frac{9}{8}\right)x^2\right)$ $+ \left(\frac{6}{4} - \left(\frac{18}{4}\right)x + \left(\frac{81}{8}\right)x^2\right) \text{ [The FT is on } A, B, C]$ $\left(1 - \frac{1}{2} + \frac{6}{4}\right) + \left(1 + \frac{3}{4} - \frac{18}{4}\right)x + \left(1 - \frac{9}{8} + \frac{81}{8}\right)x^2$
	Obtain final answer $2 - \frac{11}{4}x + 10x^2$, or equivalent	A1 5	Allow unsimplified fractions $\frac{(Dx+E)}{4} \left[\frac{1+(-2)\left(\frac{3x}{2}\right)+(-2)(-3)\left(\frac{3x}{2}\right)^2}{2\dots} \right] D=-3, E=4$ The FT is on A, D, E .

6. 9709_w20_MS_32 Q: 2

	Answer	Mark	Partial Marks
(a)	State a correct unsimplified version of the x or x^2 or x^3 term	M1	For the given expression
	State correct first two terms $1 + 2x$	A1	
	Obtain the next two terms $-4x^2 + \frac{40}{3}x^3$	A1 + A1	One mark for each correct term. ISW Accept $13\frac{1}{3}$ The question asks for simplified coefficients, so candidates should cancel fractions.
		4	
(b)	State answer $ x < \frac{1}{6}$	B1	OE. Strict inequality
		1	

7. 9709_m19_MS_32 Q: 8

	Answer	Mark	Partial Marks
(i)	State or imply the form $A + \frac{B}{2+x} + \frac{C}{3-2x}$	В1	
	Use a correct method for finding a constant	M1	
	Obtain one of $A = 2$, $B = -4$ and $C = 6$	A1	
	Obtain a second value	A1	
	Obtain the third value	A1	
		5	
(ii)	Use correct method to find the first two terms of the expansion of $(2+x)^{-1}$ or $(3-2x)^{-1}$, or equivalent	M1	
	Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction	A1ft +A1ft	The ft is on B and C
	Add the value of A to the sum of the expansions	M1	
	Obtain final answer $2 + \frac{7}{3}x + \frac{7}{18}x^2$	A1	
		5	

 $8.\ 9709_s19_MS_31\ Q:\ 8$

	Answer	Mark	Partial Marks
(i)	State or imply the form $\frac{A}{2+x} + \frac{B}{3-x} + \frac{C}{(3-x)^2}$	В1	
	Use a correct method to obtain a constant	M1	
	Obtain one of $A = 2$, $B = 2$, $C = -7$	A1	
	Obtain a second value	A1	
	Obtain the third value	A1	[Mark the form $\frac{A}{2+x} + \frac{Dx+E}{(3-x)^2}$, where $A = 2$, $D = -2$ and
			E = -1, B1M1A1A1A1.]
		5	
(ii)	Use a correct method to find the first two terms of the expansion of $(2+x)^{-1}$, $(3-x)^{-1}$ or $(3-x)^{-2}$, or equivalent, e.g. $\left(1+\frac{1}{2}x\right)^{-1}$	M1	
	Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction		FT on A, B and C $1 - \frac{x}{2} + \frac{x^2}{4} \frac{2}{3} \left(1 + \frac{x}{3} + \frac{x^2}{9} \right) - \frac{7}{9} \left(1 + \frac{2x}{3} + \frac{3x^2}{9} \right)$
	Obtain final answer $\frac{8}{9} - \frac{43}{54}x + \frac{7}{108}x^2$	A1	
			For the A, D, E form of fractions give M1A1ftA1ft for the expanded partial fractions, then, if $D \neq 0$, M1 for multiplying out fully, and A1 for the final answer.
		5	